
Appendix J March 5, 1965 

TO: 

FROM: 

SUBJ: 

Robert Graham 

J.H. Saltzer 

Assembly Programs in a Time-Sharing System 

It appears that a number of special effects caused by the time­

sharing environment can be used to advantage in the 4esign and imple­

mentation of an assembly program which is to be used exclusively on 

the time-sharing system. Some of these special effects should probably 

be carefully considered by the implementors of the 635 assembly program. 

Assembly Listings 

One important difference between batch-processed program debug­

ging and the time-shared equivalent lies in the· relative significance 

and usefulness of the "assembly listing", a printed record of the source 

instructions and the machine language translation, along with other 

items of interest, about the program or the translation. In particular, 

in a batch-processed system, the programmer virtually always has an 

up-to-date assembly listing when debugging his program. On the other 

hand, the characteristics of the time-sharing interaction mechanisms 

with turn around times measured in seconds are such that the program­

mer rarely has an assembly listing of the exact program he is debug­

ging. In fact, he is likely only to have an assembly listing corres­

ponding_ to ·the state of his program yesterday, or at best, a few hours 

ago, and he finds this listing of little more value than a simple list­

ing of his source program at the same stage. We may conclude, then, 

that during the debugging stage of a program, any extra effort put 

forth by the assembly program to produce an assembly listing (except 

in those cases, perhaps once a day, where the programmer specifically 

decides to obtain off-line output) is largely wasted. 

The fact that the assembly"program can avoid the production 

of an assembly listing has been recognized in the 7094 time-sharing 

version of FAP, which produces an assembly listing file only 



if it is requested. However, in the 7094 FAP case, only the time 

required to write the listing file is saved, and no important inter­

nal changes to the structure of the assembly process have been made. 

It is suggested that the functions of program translation and 

assembly listing production can be profitably broken up into separate 

phases, allowing the translation process alone to proceed with much 

higher efficiency and less storage space. This could be accomplished 

by creating a "three-pass" assembly program, to use the common jargon. 

The first two passes would be more or less conventional assembly pas­

ses, modified so as to completely ignore the possibility of an assembly 

listing. The third pass, then, only done if specifically asked for, 

and only called into core memory in that case, would reread the sym­

bolic input program file and the binary output program file, and 

collate them to produce a complete output listing file. 

If the first two passes of the assembly program, then, can be 

divorced from the problem of creating an assembly listing, a number 

of advantages in speed and space can be realized: 

1. There need be no coding in the main body of the assembly 

program which pertains to the assembly listing pseudo­

operations, except that necessary to ignore them in "pass 

one". 

2. Since no assembly listing is produced, it is not necessary 

to pass complete card images from pass one to pass two via 

a collation file; at most, about three machine words per 

symbolic instruction should suffice •. There need only be 

enough of an instruction to identify the operation field 

and the variable field. The symbolic location field of 

each source instruction may be discarded during pass one of; 

3. 

the assembly. Assembly listing pseudo operations do not 

need to be passed through the collation tape~ 

Thus the "collation tape" for a 1000-instruction program 

will probably only run to about 3000 words; this much 

information can probably be stored more effectively in 

memory than in a disk file. In fact, with the segmenta­

tion and paging scheme proposed for the. 635, the assembly 

program should place this buffer in core memory; if the 



supervisor concludes that this information really belongs 

on the drum memory, it can take care of the details with 

its paging ability. 

Error Diagnostics 

One can argue that the lack of a complete collation tape will 

make production of diagnostic information difficult; this objection 

can be met by smoothly tying in an editor program such as that modeled 

by ED on the 7094 CTSS. 

Most diagnostics, such as undefined symbols, etc., in an assembly 

translation, are not discovered until pass two by which time the original 

symbolic card has been lost; the error diagnostic can include little 

more than the operation and variable fields of the card in question, 

and the relative position of the instruction from the beginning of the 

program. In such a case, the assembly program should immediately and 

smoothly turn control of the situation over to the system editor pro­

gram, which can locate and print out the complete instruction in error, 

and allow immediate correction of the difficulty with the editing tools 

that the programmer is familiar with. The editor should, of course, 

also have facility to smoothly return control to the assembly program; 

depending on the organization, this might be automatic upon completion 

of editing. 


