e e o el M s wad et e eeetes e

er N

BELL TELEPHONE LABORATORIES
INCORPORATED

suBict. A Survey of the Software for the GE636 patre April 15, 1965

roM: P. G. Neumann
V. A, Vyssotsky

Table of Contents

Introduction

‘Central Software Strategy 1n the Time-Shared Multiprogramming

Environment
2.1 The Environment

2.2 Memory Considerations

2.2.1 Storage Organization

2.2.2 Storage Allocation

2.2.3 Storage Management

2.2.4 Reentrance and Pure Procedure
2.3 Time Considerations - Scheduling
2.4 Connective Tissue

Translators and Utllity Packages
3.1 Uniform Input Syntax and Uniform Input Processors
3.2 The Assembler, Binder and Linker
3.2.1 The Assembler .
3.2.2 The Interface Between Assembler. and Binder
3.2.3 The Binder
3.2.4 The Linker
‘Bootstrap GEM-
Conventlonal Narrative Algebraic Languages
3.4.1 Incompatibility of Algebraic Languages
3.4.2 NPL Subroutines
Microfilm and Graphic Display Program
GECOS
Special Languages
Command Languages
Utllity Packages
3.9.1 Elementary Functlons
3.9.2 Type Conversion and Multiple Precision
3.9.3 Other Numerical Routines
3.9.4 Statistical Routines
. 3.9.5 User Input-Output Routines
3.9.6 Other Utility Programs
her Software Conslderations
1 Accounting
2 Documentation
3 Programmer Education
L Software Maintenance Responsibility
5 Debugging

ww
=W

WwWwwww
O O~ O\l

¢
3
i

%

1. Introduction

The present documeht is intended.for limited circulation
as a survey of the present state of the software éfﬂnt for the
dual procéssor GE636 (augmented 635) system, (For referenées on
the 636 see the 635 Programmer's Manual and the description of the
augmentation hardware, software committee document 71 by
J. f. Couleur.) We hope that in addition to provoking comments,

this document will inspire the writing of those documents which

‘are hereln referred to as being forthcoming. It will then be

revised and reissued together with the 1nsp1red‘documents as a
detailed treatise on the foundations of the software effort.

The present document 1s divided into three parts. _The
first deals with the central software strategy and the use of the
facilities availlable. The second considers the translators and
utility packages. The third considers pfobiems in the use of
the system. Throughout the entire document, the aims of
reliabllity, efficiency, flexibility, modularity‘and understand-
abilityvrecur. Standards of programming and documentation
satisfying BTL, MIT and GE will be established and enforced. .

| The basic system outlined here uses many notions of
the MIT Compatible Time Sharing System (see for example MIT
document MAC-TR-16 by J. H. Saltzer), and of the relocatable
system for the TO090 evolved at BTL. |

- ot

2, Central Software Strategy in the Timejshared Multiprogramming

Environment

2.1 The Environment

The software system will provide for a wlde variety of
users, with varying requirements for turn-around time, desired
completion time, storage usage, and input-output. There are two

basic types of users -- over-the-counter users simllar to those in

the present batch environment, and on-line interactive users,

initiating and interacting with jobs from terminals such as type-
writers and teletypewrlters, scopes with light pens, acoustical
digitizers, subcomputers (such as the PB250 and PDP5 in the

present shop), or processing in real time data received from

- remote terminals such as recording or measuring apparatus. A

fundamental hypothesis of the system is that the two types of

users be as indistinguishable as possible within the machine,

-For example, it is highly desirable, although not quite achlevable,

that all language facllitles of the system be available from
typewriters.

To avold 1lnefficient use of the central processors,
any requirement for storage, input-output, etec., which cannot be
1mmediate1y fulfilled by some part of the processor should cause
the transfer of control of that program fo another program which

at that moment appears to be ready to run. This is the notion

‘of multiprogramming.

b el Boiich o . ;Jv»gﬁ
th [L ¥
-3 -

Any one lnteractive terminal will nérmaliy require
computing activity a small fraction of the time. That 1s, most
of the time a program responding to a particular terminal will be
walting for information from the terminal about what musf be. done
néxt. By taking advantage of this fact in a mﬁltiprogrammed
system, many terminals can be simultaneously attached to the
computer, and their demands for service fulfilled on féqﬁéSb,

This technique 1s known as time sharing.

The typewriter 1is the simplest computer termimal capable
of general purpose interaction. It is expected that time-shared
compﬁfer access from typewriters will become a common,..ilf not the
predominant, way of using computers 1ﬁ BTL. It 1is expected further
that thebresulting new style of computing will noticeably advance
over-all BTL productivity. '

For a detailed discussion on using typewriters as remote
terminals see‘"The Characteristics, Behavior, Attachment, and Use
of Typewriters as Remote Computer Terminals," by J. F. Ossanna
(a forthcoming software committee document), and "Preliminary
Estimates of Quantities and Traffic Statistics for Typewrilter
Remote Terminals for Bell Telephéne Laboratories,"”" by J. F. Ossanna

(software committee document 73), plus addendum.(document 80).

2.2 Memory Considerations

In this sectlon the problems of storage organizatian,

" storage management, and storage allocation are considered. Detailled

documents on these subjects are forthcoming.

2.2.1 Storage Organization

Programmers are accustomed to thinking about two dis-

similar forms of storage. One is primary storage, where eaech word
is directly addressable, and thought of-as_béing obtainable without

delay. The other 1s secondary storage, where data iS»organized in

files and records rathentthan'words,,and where the access time to
an item is expected to be much greater'than'one iostructiou time.

These concepts will not continue to be used by programmers
on the 636, despite the faot that the 636 does indeed have primary
and secondary storage with these properties, Sometimes data which
the programmer thinks is in;primary storage will actually be in
secondary, and vice rersa - Broadly speaking, words are words and
files are files regardless of where they happeéen to be.

On the 636 in a tlme-shared multiprogrammed environment
there may be dozens,“or even conceivably hundreds,. of programs
which have started execution and which ‘have not yet completed
This 1s because a program which requires input from a remote
terminal cannot proceed until the persdnzﬁhe equipment at the
terminal gets around to supplying the required input data. Not
all of theSe programs withutheir data can be simultaneously held
in core. Therefore, at any glven moment, some of the programs,
or parts of some of the programs, will be on- drum (4, OOO 000 words
maximum capacity) or on disk (33,000,000 words per unit, two units
planned)

A program which receives input, processeé it, and then
hangs up waiting for more input, willl very typlcally use only a
small part of 1ts allocated proqeduré_and data storage in doing so.
Hence 1t is very inefficient to swap éll thé program and data in
and out of coré for each such occasion. However,'it is virtually
impossible for a programmer to know in detail before a run which
program paths and déta words wlll be needed for processing the
various input items, So the selection of what is to go in and
-out of éoreﬁ?hen,is-best done dynamicélly, during execution, This
selection could in pfinciple be programmed by each useftas a part
of his program. Iﬁ,practice, most users won't .do it, because the
~effort required is so great. They quité'properly insist on |
thinking of all the program and all the data arrays as belng
addressable at once. So the dynamic seleétion must be done by
the operating system. On the 636, the operating system, using
the segmentation and paging hardware, will place ih core those
parts of programs and data arrays which are needed af the moment,
retaining the rest on secondary. To‘the user, his program and
data are logilcally éddressable, although in terms of physical
hardware that program and'data-may‘bebspread across core, drum,
'~ disk, and concelvably even data cell and tape, if some of his
‘information has beén unused for a very long time,

Glearly? with such a scheme in'operation,_a.block of
information whiéh is not feferenced will tend to slide down the

hierarchy of core, drum, disk, data cell and tape. The time

m F"M . i ' . h-w w e ot b e i A S e

required to recover the information thus increases with lack of'
use, There_will be certain types of information whichbcannot be
permitted to regress like this; hence facilities willl be availlable
in the software for guaranteeing that programs with special
requirements do not get pushed back in secondary,

| Just as prdgrams and arrays may reside in media other
than core, so data files, or parts of data files, may reside
temporérily on media other than their nominal ones. ihdeed one
important type of flle is that whose médium ié specified only as
"secondary, " without any further limitation. This will be the
default attribute forlfiles not otherwise declared, and the file
will bé;kept on,whate&er medium is dicated by éfficiency of use.
It is essential that there be widespread facilities for self-
identification of data structures, and that the use of these
‘facilities be strongly urged. This greatly alds the debugging
effort. |

' | For reaéons of memory hygiepe, some effort must be made

to keep useless iInformation from reméining in the memory hierarchy
forever, .For ease of garbage collection, the user should specify
the nature of a flle when he greates it -- whether it may be
deléted when first read (temporary), deleted by explicit coﬁmand,
kept forever, and so on. It 1is felt that the burden of deleting

files 1s a responsibility of the user, and that the user should

be charged for all storage usage, whether core, disk, tape, data

cell, or whatever. Although every effort should be made to
induce the user to release_useless'files, the system must expect.
to have files which must be pushed down indefinitely in the
hierarchy wlthout ever being recovefed, as indeed we now keep
files indefinitely without ever using them. |

Access to some of the data in storage must be restricted.
Not éll files may be'rewritten by all users, Thus, provision
must be made in the'softwaré to protect information against
unauthorized reading, execution, overwritingband deletion.
Proposals for file structures incorporating flexible protection
mechanisms are contained ?n»a forthcoming software committee
document by R. Morris'andthT CC-241 by R. C. Daley. The
augmentation hardwargﬁfzatures which will aid implementation
of such proposals.

Despite the}need for privacy, ease of use 1is a paramount
cqnsideration; Passwords (programmed combinatioh 1ocks) should be
optional on access tovfilesa so that the user who wishes safe-
guards can obtain them easily, but thé‘user who does not wilsh any
is,ﬁot encumberéd.- File naming should be simple, and both names
and?passwords should be chosen by the user, not assigned by the
system. The file routines can inforh him i1f he has chosen a
name already in his file directory and ask if he wishes fo delete
the previous file with that name. (We must assume that for any
files whose contents and names can be modified by two or more

users, the relevant users will cooperate with one another.

No automatic features can prevent chaoé if the users authorized
. to modify the file do not cooperate.)

Closely related tO'&Be problem of éuaranteeihg privacy
and freedom from tampering is the problem of guaranteeing immunity
to inadvertent clobbering of files due to hardware and/or software
errors in the‘system. Core-failures, for éxample; can be harmful
if the only map of the contenﬁs of disk is in core. Thus it
becomes mandatory for disk: to contain a file directory of: its
contents, although this probably doeé not need to be a compléte
map. It obviouély must be updated frequently, but‘probably‘not
every time,the core map 1s altered.

The notion of common ﬂileS»leads_to the need for inter-
locks on common data. For examble, user 1 takes flle A and
begins to modify it. He sometimes wants to be able to assure
that user é cannot access A untll he has completed his modification,
and does so by making it a nonread, nonwrite file for the time
being. (He is then bhe“ohly user who may change the mode of
privacy.) .Suppose user 2 1s in the process of modifying file B
(with exclusive access), but cannot complete the process until
he has access to file A. Siﬁée the hérdware provides no help
here, there must be software interlocks or bypasses to avoid the
freezeout that ensues when user 1 must access file B before he
can finish. There are presently varilous proposals for surmounting

thls problem.

|
s
T i

-9 -

2.2,2 Storage Allocation

The need for dynamic storage allocation arlses when
‘"blocks of storage are required whoée sizes or very existence
cannot be determined until run time. In such cases 1t 1s'often
not feaslble to allocate a maximum.expected block size to each
~such block, simply because the sum of the maxima is tob large,
.In the 636 system, dynamlc storage allocation 1is greatly

facilitated by the segmentatlion hardware (see software committee

docuﬁent 71)., For each such variable size file of data,.the user
may assign a ségment which may be'expanded or coﬁfracted as
desired, during the éxecution of'bhe1pr0gram. | |

All data addresses.(and instruction addresses - see
Eelow) are relatlve to the beginningvof the segment in which
. they occur. The relocation is accomplished with the aid of a
segment descfiption which contalns the address at which the
beginning of the segment is located, and the size of the segment.
It is easy to change the size of any segment wilthout having to
change any other segment. ' |

2.2.3 Stopnage Managemént

In ordepr tb obtain an efficienﬁ multiprogramming
environment, it is necesséry to.keep to a minimum the amount
of time spent swapping informgtion in and out of core. The
cruclal questions here are how and wﬁeh does information get
’swapped? what should be kept in core, and how i$ it found when

i1t 1s needed. In the 636, paging provides considerable help

. il _ m.&‘) M — b St

- 10 -

in answerling these questions. Swapping in and out of core is

performed in blocks of 64 or 1024 words (pages), and the location
of the page 1s kept in a page table. Addressiﬁg 1s done relative
to the page table, pages beingvlocated by the segmentation
hardware, ,Thus it 1s not necessary to put a'program 1nV
consecutilve lbdations in ¢éore; Iinstead, pages of the program
may be splattered around in w@étever space is available. (The
saving in. relocatlon time required to arrange consecutive core
locations is: of course significant, ésbecially in a highly
interactive environment,)

If a page is required which is not in core; the thread
becomes dormant while that page 1is brought- into core. At this

point it may become necessary to swap another page out, 'Here

E vpagé table usage statistics must be employed to défermine whom

to throw out. One useful tool far this is the use bit in each

pége table entry, which is set to 1 by'the hardware. 1f the page

1s accessed through this page table entry and if the bit 1s O.

By software cbnvéﬁtion, no page will be listed in more than one
page table entry, so every access to a given page will set the
same use bit. _ ,

If a page has been swapped in, but has not yet.been
used, it 1s almost always desirable not to swap it out, for its
use was dem?nded by a thread which became dormant because that
page wés missing. - (The exception'involves the user who happens

to quit at precisely this point.) ‘Pages which havé been accessed,

3

N N g e T et Y T M s R A D 8 AR 0 R e Y

- 11 -

hoWever, are falr game for swapping. Some sort of a software
priority scheme is required. for these?in order to give
Infrequently used pages less chance of avoilding swapping.

Proposed here 1s,sohe sort of welghting scheme such as

welght = (previous weight)(constant)+(us¢ bit - %)
, p{‘ihi&i&l*Wéight =0 ’

evaluated for each page whenever a swap_out becomes'necessary

(with all use bits being reset to zero at that time); weights are
stored in the core map, with swapping resultingvfor the page(s)
with the lowest weight.' (The hardware.Sets a use blt to one when
1ts page 1s accessed.) An appropriate vaIue‘éf the donspant_
appears to be around .9 (welght range *5) or .95 (weight rapge £10).

2.2.4 Reentrance and Pure Procedure

In order to avold multiple copies of a frequently used
~ routine (e.g. input-output), the 636 segmehtation philosophy
permits a routine to be reentrant, i,e., many users may bé in
various stages of completion of the same copy of the routine at
the same time. In order toaccomplish this elegantly, a single

copy of the procedure part of the program 1s made avallable,

and may not be altered (pure procedure).. A1l variable information
is found in a second (data) segment,fof which each user has his
own copy. In this way no interlocks are needed on the reentranf
routine, and és:many users may have access to the routine as

require it.

- 12 -~

‘A routine may be divided into a pure procedure part
and a data part for various reasons besides a desire to use the
routine5in reentrant fashion. Debugging is easier if no changes
occur in the procedure part during executicn, reinitialization is

easier, recursive subroutines are convenlently written this way

;For these reasons among qthers, hardware facilities are provided

in the 636 for making a segment read-only, and the 636 softwarej
will be designed to permit programs to be written easily in. |

this manner. However, there'are manyhcases-when it is clearly

desirable to intermix the constant and variable parts of a

v

procedure, 80 no restriptions will be . imposed to impede the

’“writing of 1mpure procedure.

The standard 636 CALL, SAVE and, RETURN macros will

use a.stack (push-down store) for saving contents of registers._

Any routine will be able to use this stack for temporary data

'Jstorage, S0 recursive programs will be easy.to-write. The user
,,Ywi_ll be able to ignore the stack completely if he wishes, even
: fto the point of_savingdregisters elsewhere (or%not at ali) by
7redefining;the CALL, SAVE and RESTORE'macros. Hevcannotjdiscard
i‘thestack, however, since it will be used by.any system routines
" he -calls. The' contents of the stack should be self—identifying
'“:for debugging purposes. Users who abide by system conventions

{will have the full benefit of system debugging routines..{_

i e

time response.

- 13 -

2,3 Time Considerations - Scheduling

There are‘manytgeneral decisions which can greatly

influence the tlme response of a time-shared multiprogramming

computer system to .its usér needs, For example, what types

of service are to be offered and to what degree? In addition-

to normal batch processing, there will be batch-processing .
fac#lities with short turn-around times and with.guaranteed
delivery, which may have to be negotiated for in advance -
hopefully by dialog directly with the'computer from a.console
rather than'thrbugh a clerk or'opefator.- (In any event, both

of these human functions should be eliminated from the batch

' - ‘processing as much as possible. The current necessity of)

mounting tapés will hopefully be considerably relieved by the.
increased size of storage.) Batch processing will differ from

its present form, howaver; in that Jobs will be stored on '

~_secondary (disk), and taken as desired,

In addition to normal take—your-chances interaction:

facilities for a variety of consoles, there will also be special Yy

Interaction facilities including guaranteed response time and

guaranteed percentages of steady-state central processor timeé

'again_by advance negotiation. The question of how many interactilve

users to allow at any time, or how to draw the line on the basls

of load rather than numbers of users can greatlyfinfluence.the7

N

‘best as possible.

- committee document 56 by W. S. Bpown).

'constantly.

- 14 -
The implementation of the various commithents outlined _
above is the task of the scheduler, which will be described in 4
detail in a subsequent document- The user should be reminded that
the time-shared multiprogrammed environment cannot produce
essentially zZero turnearound time for alllusersr It is the task
of the scheduler to attempt to satisfy the varied user needs as

‘Thus 1t becomes highly desirable that each

~ user specify in adVance'of his run (possibly by default) the

type of service he desires (e.g., turn-around time, guaranteed

~delivery, special memory or input-output~reduirements), alongv

with time, page, storage andipossibly other boundS'(see software
. ‘ in'theievent,hisvrunning
time;exceeds thertime‘bound, or}his'output exceeds the pagehbound
etd, he 1s so informed, and his ruwols haltedw pending . instructions.

v . In addition to priorities engendered by user desires

‘jand negotiations with the scheduler, there are various high

priorities required-by,the system, Highest among these 1is the

| operator's'absolute interrupt, which'must override all overrides. &

Here the override is not so much’ instantaneous but rather decisive

ﬂ':Input-output routines, on. the other hand, must have a high priority

in order“to:keepzthe (expensive) input and output devices working
Other examples are charging routines and disk dump

facilities, both with guaranteed completion requirements,

Ty
o

‘the standard conventions for user programs.

- 15 -

2.4 Connective Tissue

In addition to specifications for the identifiable
program modules of which the software‘is composed, design of the

636 must speciﬂy the way in which these various programs inter-

connect énd hang together. This connective tissue consists partly
of programming conventions - for éubroutine calls, fbr use of the_
636 augmentation hardware,. methods of storing and accessing -
temporary data, and so on (see software committee document 68 by 3
R. M. Graham for details). In part ;ﬁ W111‘¢onsist:of code, as
for example the instructions which_feside_in-thé fault vector.
In part it consists of doctrines, such as an arbitrary assevtién
that'the amount of master mode pfogram will be reduced to the
smallest possible amount. | | ‘ |

It 1s essential that the 636 software. should be easy

to bu}ld, debug and modify,-and that 1t be free of errors. It

-should be poséible to partition or reconfigure the‘(hafdware

and/or software) system on the fly. Further, the sYstem should

have the highest efficlency and the shortest reflex time (timé_to

react to urgent external signals).consistent witﬁ the other

obJectives. The most important guideline to follow in achieVing

these goals, of course, 1is careful advance planning and documentation.

Other than thié it 1s essential that the software be modular and
systematic. The impact of this on the hard core software 1s that

the hard core ‘sof'tware shouldxdevéate,asclittle as . possible from

LT e B e e T -

- 16 -

Thus, the amount of code which runs in abSOlute mode
or master mode should be minimized and insofar as possible all

programs should appear to be a part of some user run:or

Cpunsec . It turns out that this can be accomplished to a

surprisingly high degree; a more extended outline of how to- do o

this is contained in a forthcoming software committee document

3. Languages and Language Processors

3.1 Uniform Input Syntax and Uniform Input Processors

.In a computing system with many types of input
terminals and many different language translators, it is
highly ‘desirable to establish certain conventions on syntax ’

of input text, to gilve users of the system a chance of

remembering how to talk to it. These conventjons will be

~ .

~called a "uniform input_syntax., _Furthermore, a program

(e.g., a language translator) which,may’receiVe inputffrom'fv
a yariety of terminais cannot be expected to cope with‘allv

the eccentricities of all types of input devices. Hence it

| is necessary to have a "unform.input processor" to take input g

text from the various devices and render the text into a

standard form for use by language processors.

=
[4

The most basic aspect of input syntax is' the character

set. Different devices permit character sets of different

sizes, and of course the cholce of graphicS‘is essentially =

arbitrary, The basic character set for input to the new

software will be the 64 character ASCII'set, with what are

b

wiﬁﬁ

™

| larger character set may be available on all I- O devices No -

essentially the ASCII graphics.: (For proposals, see software
committee document 50, by M. D McIlroy : See also MIT
Computation Center document 00250 by F. J. Corbato) This

“will be a standard in the following sense'f a language
v'translator or other input program may assume ‘that all input
vdevices are capable of generating any character from this set

.and need not be usablecwith a more. restricted character set

Requirements for availability of characters other than these

_64 will be considered as limitations .on: the applicability of

the program, to be explicitly stated in. documentation. This

standard,. of course, implies that our current key punches

‘must be replaced by 64 character key punches.; Standard _'
binternal ‘character representations for the 64 characters will
abe those specified by GE for the 9 bit character mode. Six,bit'

' ~characters. will not normally be. used" internally

Extended character sets (more than 64 characters) will

- be available on many input and output devices, eventually a -

standard set of larger size will be specified at present

fHowever, to allow for future extensions, all generally used

programs will use 9 bit characters, and- all programs must assume
that any combination of bits can occur in a.9 bit input character.
The treatment of input characters of unspecified meaning will be

decided on the basis of context

&

1is now in progress, and the resulting'specification:will be

- 18 -

Another aspect of standard input syntaX‘for’language e
translators 1s concerned with the conventions for. indication

of comments, literals, sentence boundaries, labels, field

‘boundaries and so on., It 1s important for tutorial purposes

that an attempt at unification be made in this area; the .

standard guidelines are being developedt Current‘proposals

in thils area are contained in software committee doouments 33g'a

by R. Morris, and 39, by N. M. Haller. . o
"The objective of a uniform input syntax is to ease

the learning and memory task of all programmers, The obJective

of a uniform input processor 1s to ease the efforts of compiler

- writers. Slightly differing proposals for a uniform input .

processor are contained in software document 34 by R. Morris,v

and document 39 by N.vM. Haller. A resolution of the differéncesh

“implemented.

In addition t0'the.forms of - input pro&ided by the":
unit recordlinput and.the uniform'input processor, there wil1>
be'available to the user program a basic input mechanism>7 |
which permits him to examine a11 the input information received
by thevcomputer, without alteration. This form of input permits
the user program to;interpretithe input stream in any arbitrary
fashion; 1t 1is necessarily highly'device-dependent For example,
teletype input can be passed to the user program character by A
character, as it 1is received, this is not possible with-input

from magnetic tape.

et

().

=19 -

3.2 The Assembler, Binder and Linker

In the 7000 series machines a program in some source
language 1s prepared for executlon in two steps; Pirst it isﬁ.
translated into an intermediate language format, and then it -
- 1s loaded and linked to‘other programs. This two stage proeess
was devisedvto satiéfy requirements of convenlence and |
efficiency. "For the seme reasons of convenience and efficieney,' ;
the corresponding process on the 636 will be broken into three | §
stages rather than two. ‘Theée are trehslation, bihding and . :

linking. The advent of automatic relocation and segmentation

hardware makes 1t possible to ferm a final version of the ‘ .
. program text without knowing where in core the program will T
reside. The desire for linking during executlon, coupled with

the requirement of reasonable efflciency, makes 1t imperative

that linking should be performed«separatel& from the other tasks
-of 1nstant1a€ing a program. On the other hand, convehience and

"efficiency'require that programs be translatable in pileces smaller '

than the units handled by the linker. Hence, in the 636, the

trehslation process wiliausually be followed bysthe,binding'of:
translator output.texts into segments; the bound text nofmally
willjbe In its flinal executable form. Then, eé execution proceeds,
the linker will be invoked atvappropriate times tO'estabiish

intersegment references.

- .20 -

3.2.1 The Assembler

The basic function of an assembler is to provide a
cdnvenient flexible means of specifying machine language code.
For this pyrpose a one-to-one, field-by-field translation of
symbolic td binary is 1nsufficient, because the amount of
repetition required would be unduly high, Hence, a facllity
for handling macros and text strinés is required. It turns
out that much ef the apparatus for pseudo-operations and
generation of output can be subsumed within an appropriate
macro and string facility, and this;, of .course, increases the
flexibility of the assembler while decreasing the effort |
-required to write and maintainrit.

Another function'of the assembler as used'at BTL
is the generation»of code fer machines other than.the

computation center computer. Thils can be done, 1f the

assembler 1is properly constructed, by substituting new tables

and subroutines into the assembler in place of the standard
ones. In order that these substlitutions be possible, the
assembler must be designed so that the:relevantltables,
subroutines and de¢ision points reside in clearly identifiable

places, and are not dispersed throughout the entire structure’
of the assembler.

By

Thus, the assembler will éonsist of a skeleton

padded’ out by appropriate subroutines and tables, which

e

- 21 -

accepts input text and puts out text for use by the binder,

-For further detalls, see software committee documents 29 by

D. J. Farber, 37 by R. E..Archer, 33 by N. M. Haller, 48 by
D. E. Eastwood and 64 by J. P. Hyde. |

3.2.2 The Interface Between Assembler and. Binder"

The text which passes between assembler and binder
carrles a varilety of different kinds of information. Among

these, for instance, are text strings in final .form (e g.,

an assembled constant or op code),,text strings requiring

alteration (e g., a relocatable addreSs)“together with a

specification of what alteration is to be made (relooation bits),

-external symbols whose equivalences must be supplied at binding

time, internal symbols with equivalences to be supplied to other
routines at binding time, storage allocation information (e g.,
loading;origins), and othervmiscellaneous information,'gThe
format to be used as interface between translatorssand binder
has not yet been chosen,_bnt some oflthe desiderata:are as
follows:? | S o - ,

(l) Tables, or isolated table entries, should be. explicitly

" identifled by header information; e. 8.5 relocation information

should be preceded by a header indicating that relocation :,'

information follows, and how much ‘of 1t there: is.'

* (2) The structure is to bevopen-ended, in the sense that

header formats should allow later inclusion of an arbitrarily

" large number of new types of tables.

RN

(Y

st

that form as input to the binder.

- 22 -

(3) Check features (e.g., check sums, sequence numbers)

will not be included as part of the format, but will be Iinserted,

verified and deleted by I-O routines~as may be approprilate to

the various recording media.

(4) The interface text will not be constrained to be
intelligible to humans..

(5) The interface text will be formatted so that binder
output text 1s acceptable as binder 1nput text, in order that
a..segment may be built up in multiple passes through the binder.
Text strings whose final form in core can be completely

determined at translation time?should appear in essentially

3.2.3 The Binder

The Jobvof‘the binder 1is to accept one or more moduies
of text produced by translators (or by previous passes. through
the binder) and combine them into a single larger module,'
which will typically be a segment plus 1its linkage information.

The binder also provides the interface between source languages

and the system for generation of debugging dictionaries, data

"structure descriptions, ete,

The two major- tasks performed by our current loader
are establishment of 1nter module references and relocation of
addresses. These will also be done by the binder; however,

inter-module references will be direct (as in a linking loader) -

TN

- 23 -

rather than via transfer vectorsﬂ This will permit assembly
of programs in modules which do nﬁt have to be complete
subroutines, and will also allow source. language layout of
data storage to be compiled iﬁdependently of the prdcedures
which referencé:the data. |

The binder will have'a‘new, and initially'quite 11mited,

.faciiity for expanding macros at binding time. In the initial

version such expansions must obey the restriction that the length

of text to be generated at binding‘time be known at translation

time. It is possible that this restriction may.be removed at some
later date. _ V v

The binder may also include, either initially or
at somé later date, a faciiity for accepting assemblyvlanguage
source text, Shipping 1t to the as;éﬁbler, and then binding
fhe resulting module with ofher‘modulés.; Whe;her this facllity
is included will depend primarily on how easy it is to'implemen%.

| 3.é.4 The Linker '

A procedure segment produced by thé'binder is féady
for execution.. Inter-segment references have not been
established, and will not normally be established before
execution begins. Instead, the linkage infopmationibf the
bound segment will be placed in a linkage_segmen£,~and'will

remain unlinked until an attempted inter-segment reference

causes a fault. (§ee software committee document 68 for details -

of linkage segment format,) When the fault occurs, the linker

ffffff

.......

ooy -

will be invoked, will retrievé_the referenced segment if it

is not already avallable; will implant the linkage information

of the referenced segment into the linkage segment, will 1ink4

the desired intersegment reference, and then return control

to the pfogram which caused the fault. If desired, it is also

possible to 1link at one time all feferences in a glven segment
to a particular outside point. |

In addition to this aﬁtomatic mechanism a.nﬁmber of
explicit calls will invoke the linker. One of these will be

a call which requests "Link such-and-such a reference, and

‘do 1t now." This will cause the same linking action as would

~a fault, but under explicit program control. This call has

various uses, and 1s essential in some cases as a subsbitute
for the automatic linking. Another call which 1ﬁvolves a part
of the(linking mechanism ;s a request for.a new data block in
an.exiét;ngvsegment. This requires establishing or changing
an.intersegmenf pointer. This type of call willl be provided
primariiy aélan.aid to handling thevNPL ALLOCATE statement.

' - Since the input tb the linker Will‘be in a form
which could also serve as input to the binder; a segment
being instantiated by thelirnker. wlll be accompanied by much °
information that the linker need not make qse‘of. To what

extent this‘information should be‘discardéd and to what'extent

it should be put in some convenient spot for;the use of debugging'

B &

s B

- 25 -

alds 1is as yet unclear. Howeter, this extra'information must
‘be retained somewhere to permit unlinking and subsequent ‘binding
or relinking of segments already linked

3.3 Bootstrap GEM

Because the new assembler and binder cannot f\‘
reasonably be made availlable before late 1965, it is essential
to have some preliminary mechanism which will generate code for
the 636. This will be a combined assembler- binder,'currently |
known as bootstrap GEM Bootstrap‘GEM will beva slightly revised
GEM assembler with a loader.grafted‘onto it, to produce 636 code

ready for linking. Because_the binder is’included in the ‘assembler,

‘bootstrap GEM will necessarilyiproduce_one‘andjonly one segment

per source deck.

Bootstrap GEM is being produced by GE and should be
completed in May or June of 1965.

3.4 Conventional Narrative Algebraic Languages _:

- Among the languages available on the 636 will be
Fortran IV, COBOL, and NPL. (or MPPL or whatever it is called)
COBOL will be avallable only through the GECOS
submonitor, and will conform to the specifications in the

GE 635 COBOL Reference Manual CPB-1007. It will be implemented

by GE.

Fortran IV will be available through the GECOS

submonitor, and may also be accessible directly from the main

s b T s . ., /

»

N

\
- Y

- 26 - -

operating system; GE‘is'now considering whether this is feasible
GE will implement Fortran IV as described in the GE 635 Fortran IV
reference manual CPB-1006. h , - ﬁ“

An initial version of NPL will be implemented for BTL

by Digitek, for April 1966 delivery. It will‘follow the IBM NPLv.

Technical Report 320-0908_except for certain iBM modifications‘

" not included in the report, minor deletions by BTL (e.g., sterling

currency arithmetic),'and certain BTL ektensions. 'For details'

on the 636 NPL and its differences from the: IBM technical report
i see software committee documents 65, by Digitek, and 66 by

M. D. McIlzoy. A second version of-NPL'will be delivered by

Digitek about six months after the first version It is to be
:expected that further versions of NPL will be required since _
: NPL is a novel 1anguage in some respects, S0 that both extensions
to the language and improvements in compiling techniques are'

- 1likely to be forthcoming

' In addition to COBOL Fortran IV and NPL, & MAD

_compiler and an ALGOL compiller will probablv be available for

the 636, implemented by MIT and GE. »Novdetailsyare yet

viavailable; and there is 1little reason to believelthat'theSe

’languages willbbe widely used at_BTL;~

Fortran II will not be available on the 636 in any.

, form' The extreme difficulty of implementing a Fontran II
'lcompatible with our current compiller, together with the virtual

- coincidence of function of Fortran II and Fortran Iv, preclude ,

e “until late 1965

| ;,27 el

the eXistence of Fortran‘II. :Some program will be prOVided
to aid conversion of‘Fortran II~programs to Fortran IV,

" 3.4.1 Incompatibility of Algebraic Languages

It appears highly probable that novprocedure<written’

 ‘in Fortran IV COBOL NPL, MAD or ALGOL will be able to call”
i directly any procedure written in another of these languages.vb”
' This state of affairs appears to be " largely inherent " in the :
vi"detailed structure of the- source languages themselves, which
f require different mechanisms and different kinds of information

 for transmission of subroutine arguments..

It is possible that interface subroutines can be

provided to,allow,argument transmission in many cases, the
 most hopeful being a call from.a Fortran IV program to an NPL
subprogram.} This technique’and‘others will'be made~availab1e'~'

f wherever reasonably possible, but details will not be available

9y

3 L, 2 NPL Subroutines

In order for the full NPL Language to be available,

f'a large number of subroutines will have to be provided for use

‘,by NPL obJect programs.‘ These,include»various numerical

: packagesvto perform arithmetic of various types and’precisions,

‘a_large package of type conversion‘routines, dynamic storage |
-~ allocation, diagnostic and debugging’routines,'stack usagedand :

; I0 routines;’ These routines will be so written and embedded

; in the software as to make them available also to programs

- 28 -

written in asseblyilanguage;_-Arguments_and argument”transmission
techniques will be specified by Digitek in the course of NPLW

.development, Further, mechanisms comparable to the asynchronous

facilities of NPL will be available for use by programs written

in assembly language

3.5 Microfilm and Graphic Display Programs TS

Because of the diversity of visual display devices

‘which“may eventuallyvbe attached to, the 636 and because of the

transmission and buffering requirements of visual display devices,

it 1is desirable that the format of data for visual display
should be standardized in a form that is compact and convenient

from the viewpoint of a’ programmer oriented toward display

G hardware.

However, for the user who doesn't care about the

intricacies of display hardware, and Just wants pictures,:-f

. a hardware oriented language format is inappropriate.’ For the
'fsuser there must be a set of primitiVes available in Fortran,

:f; NPL and assembly 1anguage, analogous to our- current system

plot routines. The detailed form which such facilities will

have is not yet clear, one proposal is that of F. W. Sinden;‘y

in a subsequent software committee document 'There are no

current plans to provide a compatible replica of ‘the microfilm
S

'routines in BE SYS7. | L T e T

The use of. such primitives is unduly laborious

if»for many standard applications, and it will be necessary to

T e T OO T oot e et

™

TS

maintain compatibility with 635 GECOS. C

- 29 -

provide packages of standard plot routines to do, for
instance, éutomatic:scaling, labeling.and plotting of one
dimensional arrays. This job, however, is of comparatively
low priority, and will probably not be started uhtil much
bther software efforttis complete.

3.6 GECOS (Comprehensive Opérating Supervisqr) | '

GE will provide for the 636 a version of GECOS IiI

which runs the 636 as if 1t were a 635. This monitofvis
essentlal as a fall-safe againstfsoftware schedule delayé‘.
in checking out the new 636 softWare,-and particularly in

efforts to determine whether a particular trouble 1s due to

" hardware or software. This stand-alone GECOS, however, will

not be useful after cutover to new software. At thatvtime,.
facilities compatible with GECOS will have to be provided within
the framework of the new software. K

Two different proposals have been contemplated for
doing this, The first envisions an "éncapsulated" GECOS!
which is essentially GECOS III with almost no recoding; sub-
ordinated to the new mohitor by forcing GECOS fo run in

élave mode as a single segment throughout anc entire batch of

user programs. GECOS master mode funétionslwould be perfbrmed

by the new monitof as 1t catches faults caused by GECOS'! attempts
to 'issue master mode instructioﬁs. This élternative ﬁas the
advantage of being simple to implement, eaéy.toldebug, §omp1etely
compatible with GECOS III for the- 635, and easy to update-to -

N

e e

- 30 -

The second proposal envisions an "articulated"

GECOS, partly rewritten to take advantage of the ségmentation

features of the 636, and the file handling strategies of the

new software. This would perm1t GECOS to be scheduled more
flexibly, and GECOS storage to be allocated more flegibly,

than would the encapsulated version. .The articulated version

~would also permlt users of GECOS to take advantage of certain

of the new software features. For example, GECOS runs could

'bé.started from typewrlter consoles; data could be passed to

| i S
GECOS runs from filles constructed under the new monitor

facilities; some subroutine packages constructed for the new

software could be used with GECOS.

Cbmpatibility of 635 GECOS with articulated GECOS
will be harder to achieve and maintaln than with encapsulated
GECOS.“However, since GE proposes to do the implementation

and maintenance, and since GE favors the articulated version,

1t is advantageous to proceed with the articulated GECOS.

GECOS users, howqver, should not assume that any particular

new feature Will be available in 636 GECOS until that featufe

- 1s specifically guaranteed.

3.7 Special Languages

The 636 software will include SNOBOL, ALPAK,

Simscript and BLODI. For none of theﬁe i1s a detailled

specification yet available. SimScript will-be essentially

i

-3 -

‘the same as the version now in use on the 7094, BLODI will

be basically the version recently completed;by B. J. Karafin
for the 7094 (MM-65—1359-2). 'ALPAK will be ALPAK B or some

extended version thereof. SNOBOL will initially be an

adaptation. of SNOBOL 3, and will'subsequently be extended.

Of these translators, the one of highest urgency.
1s SNOBOL, which is needed at initial installation date.
Simscript will also be availabie'at-initial installation,

because there will by then be a vefsion of SimScript supplied

‘-by GE and running under GECOS.

N

3.8 Command Language

The command, (control card) language of the new
software will be a narrative language without looping
capabilities, i.e., ‘it will be similar to.the control card

language of BE SYST7T and to the command language of CTSS

(MIT's Compatible Time-Sharing System); it will not assume

(as does GECOS, for instance) .that all control cards for a
run will be read and interpreted before execution begins.

_ Cdmmand format will conform to the,uhiform input
syntax (i.e., free fields), and therefore the line layout
will look much like the current layout of CTSSfcomﬁands. In:

general, the command language can be expected to include the

N

~sorts of commands currently available in CTSS, plus other

commands for handling files (e.g., rewind), and a number of

-.32 -

miscellaneous commands (e.g., unload). There will also be
various declarations, including file‘declarations like the

DISC and'TAPE declarations of GECOS, and various control

declarations (e.g., a declaration like the LIMITS declaration

of GECOS). More details will be ‘available in May 1965. A

» detailed discussion of a framework for command language

implementation is contained in spftware committee dbcumenf 77

(the SHELL: A Global Tool for Calling and Chaining Procedﬁres

in the System, by L. Pouzin, MIT Desigm Notebook, Section IV).
3.9 Utility Packages B a |

p N

| 3.9.1 Elementary Functions
The elementary function routinesfnow ineorporated in

GECOS may or may not use satisfactory algorithms.- This 1s yet
to be determined. However; they must be modified for the new
software in any event, to conform to calling sequence modifi-
cafions dicatated by 636 hardwére.; In addition, since NPL
and Fortranvwill use different conventions for argument
transmiesion, some or all of fhe elementary function routines
will have to exist in two versidms, one for Fortran and one

for NPL. Moreover, routines for multiple precision arithmetic

f

anﬁ for multiple precision elementary functions will be required

s

for NPL,

.

Since the number of routinesbrequired for elementary

functions will thus be quite large, and since the speed of the

routines is lmportant, -they cannot be made to work correcﬁly

- 33 -

by conventional techniques of hand coding and manual debugging.

Hence, 1t 1s very desirable to have generatofs for ‘elementary
function routines, and semi-automatic testing procedures for °
the resulting programs. Whether édequate generators can be
developed on a time scale consistept with hardware development
1s doubtful. Nonetheless, the development'of geherators will
be pursued, Since a good generator wlll be very useful even

if it is completed somewhat late. |

3.9.2 Type Conversion and Multiple Precision

For NPL it 1is necessary td have an extensive package

of routines for type conversion (e.g., BDC and DBC) and for

' multiple preclsion arithmetic. . These routines will have to be

written fprofm scratch; whether they will be done by Digitek or

It 1s possible that these routines will also be
usable for Fortran I-O conversion in place of the package
currently used by GE 635 Fortran. - If.the Fortran I-O package

can be thus eiiminated,@systeﬁ maintenance will be somewhat

3.9.3 Other Numerical Routines

Depak (differentigl equations) will be running on the

635 under GECOS by the time of 636 installation. Because of

this, it 1is not essential to subordinate Depak directly to the

!
!
.
-

\‘_‘,
N
} ;
1

by BTL is not yet decided.

5 - simplified.
{ i
L

("

e

-new monitor at fifst, though it will be done eventually. A

P

e

- \'-‘);/: A

T

equations. Such programs invoiveAé substantial amount of

- 34 -

matrix package must be provided, including eigenValue and
eigenvector and matrix inversion routines. ‘These routines
ﬁust be constructed and tested with great care, and BTL will
have to devb#e substantial efforf.to them, even if GE does the

code. Similarly, BTL will héve_to exert effort on techniques

for root finding, since good root_finding techniques are not

easy to pfogram. The same statement holds for any routines
we may need for such jobs as eValuating the hypergeometric

function or finding solutions of simultaneouslnon-linear

research in numerical analysis.

3.9.4 Statistical Routines

The development of statistical routines for such

- purposes és analysis of variance and multiple regression is

beyond.the compétence of the computation center software
groups, and mést therefore be left to the various user groups
sophisticated in practicalvstatistical methods. Development.
of a set of routinés fdf use in data lauﬁdering is an urgent
task,:and could be undertaken by any'of a varilety of groups;
it is hoped tﬁat competent pebple with both the enthusiasm and
the time to do thils job will appear. - |

3.9.5 User Input-butput

Input-output routines invthe new software wil be

invoked in two different manners. The automatic filing and

retrieval required for operation of the singieéleve} store will,

b

. /"
‘s

-35-

',of course, use the basic I-O routines. There must also be::

. facllities available for user programs to control I-0 explicitly.
.The calls available for this pUrpOse will be constructed for
.Specification by exception; thatvis; any parameter which is

not specified by the user program will be gilven soﬁe default

value.. The‘fUIl specification of the characteristics of a

data file might be, for instance, "tape, 200 BPI, even parity,
labeled, 14 word records." However, for most,fiies the user
doesn't need to of.wishfto specify'such detailed characteristics.

He may wish to declare simply that the file is serial or, he may

wish to make no statement at all about the properties of the file,

and let the operating system choose. It is intended that the

new software -will allow the user to employ any of these degrees

of specificity.

It is worth noting that euentually, although perhaps ~

not in the first version, the I-O may.pass through some inter-

-mediate‘transcriptionumedium, at the convenlence of the operating)

system. This gambit, Which may be viewed as an extended bufferiné

strategy, would, for example, deposit'an'output file on disk
untlil a seven-track tape unit became avallable, and then copy

the file. This kind of strategy can help with scheduling of"

‘peripherals.

‘The type conversion which is now associated with some

forms of I-0 is in principle an entirely sepdrate function, ‘and

\ 6.

o

N

- 36 -

will reside in the package of routines used for type conversion.
) o

From the point of view of the user, of coursé, conversion will

 continue to be available as part of I-O operations, as well

as separately.

3.9.6 Other Utility Programs

A sort-merge package and linear programming package
will be avallable under GECOS, provided by GE. There are no
plans to make either of these packagés function in. the new
software except via the GECOS submonitor.

A context editor like the one.curfently available

in CTSS will be part of the new software. It will be

programmed at MIT.

4.1 Performance Statistics and Accounting

For the benefit of computation center staff and

systems programmers it 1is lmportant that provision should . ~

be incorporated in the software for gathering of operational

"statistics at various levels of detail. This is even more

~desirable with a multiJéCcess, multiprogrammed system than

with ouf current batch processing mode. Such parameters

.as percentage of:.ddie time, percéntage of CPU time consumed

in paging and current drum-and disk occupancy will be very
hard to obtain unless plans are made from the incepflon of
the softwaré effort to have them gathered. Estimating the
effectiveness of scheduling and paging algorithms involves

obtaining information on such items as queue length and

- did what, when, and how did 1t turn out.

- 37 -

waiting time distributions. In addition, 1t should be possible
to keep track of users of certain routines (e.g., NPL, the

microfilm package), obtaining‘genefal information such as who

Unfortunately, past experlence has indicated that

the measurements one wants to takéAare,frequently those that

were not thought of in advance, and are therefore hard to ;f
make. In this area BTL can profit by the experience of
Project MAC on thelr current time-sharing system.

Accounting and charging are related to performance

 statistics from‘a programming point of view, since much of

t

the information developed for either application is relevant

" to the other. Accounting and charging practices as such enter

into software design only peripherally. It is necessary for

* the software task force to ensure that the information required™ E

for accounting 1s avallable and is developed, wuLC It 1s of great

concern to the software designers that charging practices should k
. ¥ |

~conform with software design objectives in the sense of tending N ;g

to balance the load from the system deslgn point and: not causing Ai;
substantial 1nefficienc&ﬂ (Incidentally it 1s desirable to have j?
lower rates for low priority use:.in order to help equalize the _ ”@
loag.)

4.2 Documentation

Documentation of the 636 software will be a large

part of the total software effort. Six categories of : _ ‘f

documentation need to be distinguished:

- 38 -

1) Interim working documents, generated as a part of
the design and implementation process.
- 2) Specification documents.

3) Maintenance documentatjon, intended for use by the

pfogrammers Who have to keep the software running and make

changes to it. .
R _ | 4) User reference manugls; | ’ T
5) Tutorial documents for new users.

| 6) Published papers.

The interim working ddcuméntS'are currently being
produced in considerable numbers, and this process will cbntihue
" throughout the project. Such doquments as this one are intended
to be of strictly gemporary interest to a raﬁher limited group.
It would be unreasonable‘to expect that the il «:f !

‘other classes of,documents will be,produced entirely by the

programmers who write the software. Such documents will be ' i

written by'a group consisting partly of the programmers who R .}
produce'soffware, and partly of trained documenters'from v ﬁ
i v such areas as the manufacturing information éroups at BTL.
o ~ Our objective should be to have user reference

manuals produced on the same time scale as the software
1tself; maintenance documentation will lag somewhat behind, ' A
but the lag should be as short as possible (a few months). g i

N Tutorial documents will undoubtedly come along on a slower

...39..

time scale, since they will have .to be revised after
experience in tralning new users on a functioning system.

A sixth type of document which we must strive to
produce 1is published papers desdribing any new and interesting
aspects of the softwére. It.would'probably be unwise to
iﬁvest>the>project'with an aura of "publish or perish." It

would be equally ﬁnwise to ignore the importance of readable

publishéd accounts of new developments embeddéﬁ in the software.

4.3 Programmer Education

Some four to six months before the new system bedomes

N

generally avallable to users 1t will be necessary to begin

explaining in detail to prospective users what facilities will

be avallable and how to use those facilities. This will be at

a time when.reference manuals and tutorial manuals will be

available only 1n part, and probably in a not very satisfactory

form. In view of this, the system programmers must consider

giving preliminary courses to users, and generally helping

users to learn abdut the new system. This effort should be
beneficial, in that it will provide feedback from users on
unacceptable or awkward aspects of the software. It will
also be a consilderable hardship to programmeré engaged in
th? final stages of coding and debugging.

4.4 Software Maintenance Responsibilitz_

The degree of acceptance which the new software

recelves willl be directly related to its usefulness. Its

- 40 -

usefulness, in turn, will be considerably reduced if it
doesﬁ't work. Since a great deal of experience hes shown
that no large program is ever free of errors, the software
will have to be maintained. |

General Electric intends to assume primary responsi-
bility for maintenance of the 636 software, including portions
written at BTL as well as portions written by MIT and by GE |
itself.v However, much past experience’has indioated that
programs as large and complicated as those involved in the 636
software can only be maintailned properly if the original
designers and implementers are available to assist in the work.
Thus, we must expect that for a perlod of a year or more after
initial cutover of the new software, all the BTL pepple
involved 1n 1ts production will have to spend part of theilr time
on consulting and maintenance.

J 4.5 Debugging ‘

Debugging seems to be one of the fundamental problems
in the efficient opepation of the entire system. (See software
committee document 57 by W. S. Brown.) Its effective imple-
mentation influences almost.ell parts of the system, and thus
cannot be 1solated to g single part of the system. The most
effective techniques of all, however, are those devoted to the
prevention of bugs in the first place, and thus it seems
paramount to enforce certain standards on the system itself

as well as on its users. These include lmposing stringent

S 4 -

requiremeﬁts on documentation (see 4.2), having available
analytic'tools such as RUFUS and FORTRACE, and generally
taking oﬁt of the hand < w7 of the user tedious
details in which he is 1ikeiy to make mistakes, such as
subroutine calls, input-output handling, etc. It is, of
course, also to the user's advantage to use that language
which 1s most suited to his program.

To help in the detection, location and extermination
of bugs, various software facilities are desired in addition
to sets of standards (the latter including the requirements of
error checks, self-identifying structures, the ability to
replicate a run at a later time). Two types of facilities
are required. One 1s an editing and debugging facility
peculiar to each translator and languége being used. An
example of this type is MADBUG (see MIT document CC-247,
MAC-205), for_use with the MAD language. MADBUG in its current
form provides for controlled execution with insertable break-
pdints; sourée language editing, provisional changes, and
interrogation of the resulting machine code at a symbolic
level. (A sucéessor of MADBUG for the GE 636 will exist,
but presumably will have 1little use at BTL.) There presumably
should be one such fécility for each translator in the system,
i.e., one forbNPL, FORTRAN, etc. They will all have in common

the table of the assembler, linker and binder, and will probably

- Lo -

require other tables as well. Each translator should have
éppropriate symbolic print routines, geared to the data
_structures by providing the appropriate conversion and
format, and inserting identifying names where desired. Thus
the design of the respective translators depends to some
extent on debugging neéds.in order to assure thatvrelevant
information 1s available.

A second type of facility involves the system directly,

and 1s an extension of OEDIPUS (W. S. Bfown; Comm. ACM, June, 1965).

The translator and utility packages depend on a considerable
amount of software, here called the supervisor. Some of this

software 1s directly concerned with debugging, such as

- mechanisms for symbolic snaps, for setting and printing of

remarks and for post-mortems. The supervisor will aiso.contain
coarse and fine dynamiolstorage allocation, the stack, and
scheduler. The contents of the stack, the data structures
which have been dynamically allocated, and the scheduling
information must be availabie to the symbolic snap routine.

The symbolic snap routine will locate a data structure,
identify it (data structures will be self-identifying), and
will consult a table to findlan appropriate conversion and
output routine. The table must of course be provided by

the translator or processor being used. If no appropriate

H

Gl e Baa el i

- 43 -

enfry is found, there will be a standard default output
routine. It is up to the writers of the translators and
utility packages to take advantage of the above debugging
facilities. The facilities for debugging and theilr
implications on the rest of the operating system will be
'discussed in a forthcoming document.

CP\C;~ 746%%~100vn~
. : P. G. NEUMANN

| 'V,AW

Mg- 1271 FON_px V. A. SOTSKY\)

1273 VAV®

