
I

-~ __ ..,. __ •• ...,......,~~c-_. -- - -_, ~---- ~ ktL~---·- , _ _,_ __ : _____ ~~ . ~ ··--··

-~{ . ~-~ ~ E L . l __ r
·····----.. --.------ \i!J; ~ \ .•

,..., .. , ...
'

1 BELL TELEPHONE LABORATORIES
INCORPORATED

su~ecr, A Survey of the Software for the GE636 DATE: April 15, 1965

1.

2.

3.

4.

Table of Contents

Introduction

FROM; P. G. Neumann
V. · A. Vyssotsky

Central Software Strategy in the Time-Shared Multiprogr.am!Iling
Env;ironment
2.1 The Environment
2.2 Memory Considerations

2.2.1 Storage Organization
2.2.2 Storage Allocation
2.2.3 Storage Management
2.2.4 Reentrance and Pure Procedure

2.3 Time Considerations - Scheduling
2.4 Connective Tissue

Translators ano Utility Packages
3.1 Uniform Input Syntax and Uniform Input Processors
3.2 The Assembler 1 Binder and Linker

3.2.1 The Assembler.
3.2.2 ·The Interface Between Assembler-and Binder
3.2.3 The Binder
3.2.4 The Linker

3.3 Bootstrap GEM·
3.4 Conventional Narrative Algebraic Languages

3.4.1 Incompatibility of Algebraic Languages
3.4.2 NPL Subroutines

3.5 Microfilm and Graphic Display Program
3.6 GECOS.
3.7 Special Languages
3.8 Command Languages
3.9 Utility Packages

3.9.1 Elementary Functions
3.9.2 Type Conversion and Multiple Precision
3. 9. 3 Other Nume,rical Routines
3.9.4 Statistical Routines
3.9.5 User Input-Output Routines
3.9.6 Other Utility Programs ·

Other Software ·considerations
4.1 Accounting
4.2 Documentation
4.3 Programmer Education
4.4 Software Maintenance Responsibility
4.5· Debugging

,. ·"' ... ~~.--....... 'Ito '• ... 0'"

..:._,._ ..

,_ _
·...,~.,.......- ..

- 1 -

1.· Introd~ction

The present document is intended for limited circulation

as a survey of the present state or the software effort for the

dual processor GE636 (augmented 635) system. (For references on

the 636 see the 635 Prog~ammer's Manual and the description or the

augmentation hardware, software committee document 71 by

J. F. Couleur •.) . We hope that in addition to provoking comments,

this document will inspire the writing of those. documents which

are herein ref~rred tq as being forthcoming. It will then be

revised and reisstied together with the inspir~d documents as a

detailed treatise on the foundations of the software effort.

The present document is divided into three parts. The

first deals with the central software strategy and the use of the

facilities available. The second considers the translators and

utility packages. The third considers problems in the use of

the system. Throughout the entire document, the aims of

reliability, efficiency, flexibility, modularity and understand­

ability recur. Standards or programming and _documentation

satisfying BTL, MIT and GE will be established and enforced~·.

The basic system outlined here us~s mapy notions of

the MIT Compatible 'l'ime Sharing System (see for example MIT

document MAC~TR-16 by J. H. Saltzer), and of the relocatable

system for the 7090 evolved at BTL.

' · .• : • • I ' ~" "• - '• ' ' • ' • •" :-f ·, •. ,

\.

~- . r -~--·-······ -----'·----··------------- ~ ·--"
.__,__. ~-·-

- 2 -

2. Central Software Strategy in the ~ime~Shared Multi~rogramming

Env!ironment

2.1 The Environment

The software system will provide for a wide variety of

users 1 with varying requirements for turn-around time, desired

completion time, s~orage usage, and input-output. There are two

basic types of users -- over-the-counter users similar to those in

the present batch environment, and on-line interactive users 1

initiating and interacting with jobs from terminals such as type­

writers and teletypewriters, scopes with light pens, acoustical

digitizers, subcomputers (such as th~ PB250 and PDP5 in the

present shop), or processing in real time data received from

remote terminals such as recording or measuring apparatus. A

fundamental hypothesis of the system is that the two tyPes of
' ~~

users be as indistinguishable as possible within the machine.

-For example, it is highly desirable, although not quite achievable,

that all language facilities of the system be available from

typewriters.

To avoid inefficient use of the central processors,

any requirement for storage, input-output, etc., which cannot be·

immediately fulfilled by some part of the processor should cause

the transfer of control of that pr,ogram :eo another program which

at that moment appears to be ready to run. This is the notion

of multiprogramming~

.. 3 ·-

Any one interaqtive terminal will normally require

computing activity a small fraction of the time. That is, most

of the time a program responding to a partic~lar terminal will be

waiting for information from the terminal about what must be. done
\

next. By taking advantage of this fact in a mpltiprogr~mmed

system, many terminals can be simultaneo'l).sly ~ttached to the

COmputer 1 and their demandS fOr SerViCe fUlfilled On reqUeSt •.

This technique is known as time sharing,

The typewriter is the simplest computer termina~ capable

of general purpose interaction. It is expected that time-shared

computer access from typewriters will become a common, .. if' not the

predominant, way of using computers in BTL. It is expected further

th~t the resulting new style of computing will noticeably advance

over-all BTL productivity.

For adetailed discuss;ton on \lsing typewriters as remote

terminals see 11The Characteristics, Behavior, Attachment, and Use

of Typewriters as Remote Computer Terminals," by J. F. Ossanna

(a forthcoming software committee document), ~nd "Preliminary

Estimates of Quantities and Traffic Statistics f.or Typewriter

.Remote Terminal~ for Bell Telephone Laboratories, 11 by J. F. Ossanna

(software committee document 73), plus addendum.(document 80) . .
2.2 Memory Considerations

In this section the problems of storage organization,

· storage management, and storage allocation are considered. Detailed

documents on these subjects are forthcoming.

4 '"-'. ~·'-"':""'': ' • c ·~

f.

~ f --~
-·-~

. - 4 -

2.2.1 Storage Ors;anization
I . t

Programmers are acc.uf;ltomed to thinking about two dis­

similar forms of storage. One is primary storas;e, where each word

is dir~ctly addressable, and thought or· asbeipg obtainable without

delay. The other is secondarl storase, Where data ;lsorganized in
. .

files and records ratherrl·than words, . and. where the access time to

an item is expect~d to be much greaterthan.one instruction time.

These concepts will ·not continue to·be used by programmers

on the 636, despite the fact that the636 doe~ indeed have primary

and secondary storage with these properti~s. Sometimes data. wh:l-ch

the programmer thinks 1s in: primary storage will. actually be in

secondary, and vice vers~ ... ·. ;Br.oadly speal<;ing,: WOJ:'QS are words and
. '

'• . . .

files are files regaraless o.f wh.ere tO.ey happen to .be.

On the 636 in a time-shared mult1programrried_environment

there may be dozens, or evert conceivably hundreds, of programs

whd.ch have started execution and wh1,cn have not ·yet.o.ompleted.
;

This is because a program wh:t,.ch requires input· f'roma remote
. or

terminal cannot proceed until the. per.sonAthe equ:1,pment at the

terminal gets around to supplyiq.g the I"equired input data. Not

all of these programs with. their data can be simultaneously held

in core. Tnerefore, at any given moment, some of the programs~

or parts or some of the programs, will be on drum.(4,oooiooo words

maximum capacity) or on disk (33,000,000 wol;'ds per ul;'lit, two units

', __ . planned) .

- 5 -

A program whicn re9eives inp~t~ p~ocesses it, and then

hangs up waiting for more input, will very typically use only a

·small part of it~ allocated procedure and data storage :tn doing so.

Hence it is very inefficient to swap all the program and data in

and out of core for ~ach such occasion. However, it is virtually

impossible for a programmer to ~now in detail before a run which

program paths and data words will be needed for processing the

various input items. So the selection or what is to go in and
•Nt -out of core~,!lhen, is best done dynamically, during execution. This

selection could :tn principle be programmed by each user as a part

of his program. In practice, most users won't do it, because the

effort· required is .so great. They qu;1,te properly in,sist on

thinking of all the program and al.l the data arrays a~ being

addressable at once. So the dynamic selection must be done by

the operating system. On the 636, ·the operating system, using

the segmentation and paging hardware, will place in core those

parts of programs and data arrays which are needed at the moment,

retaining the rest on secondary. To the user~ his program and

data are logically addressable~ although in terms of physical

hardware that program a,nd data·may be spread across core, drumt

disk, and conceivably even data cell and tape, if some of his

information has been unused for a ver".f long time,

Clearly, with such a scheme in operation,_a block of

information which is not referenced will tend to slide down the

hierarchy of core,· drum, disk, da~a cell and tape. Tne time

, .. , .. ,. ·-~--~ .. ,... ''"•" .. ~-· ' ·".. ''-:;., .·,·· .. ,. >;'(•· • • --· :-~. • • -~--:~ ,._ .,,,,, .·-: •• ~[>'.o-J.,~ .• ":;•!Y.'r>"o:t:o;;."'':< '."<. ,,.,_ , .. ~.--· ,._.- ;; "''" • • ., -· '~·:· . ;·•'· ; "·Y'' -..

~!.~
.......... ~-·

a · .. f -

- 6 -

required to recover the information thus increases with lack of

use. There will be certain types of information which,cannot be

permitted to regress like this; hence facilities will be available

in the software for guaranteeing that programs with ~pecial

requirements do not getp~shed back in secondary.

Just as programs and arrays may reside in media other

than core, so data files, or parts of data files, may reside

temporarily on media other than 'their nominal ones. Indeed one

important type of file is that whose medium is specified only as

"secondary," without any further limitation. This will be the

default attribute for files not otherwise declared, and the file

will be~'kept on whatever medium is d;tcated by ~·fficiency of use.

It is essential that there be widespread facilities ror self-

identification of data structures, and that the use of 'j:;hese

facilities be strongly urged. This greatly aids tne debugging

effort.

For reasons of memory hygiepe, some effort must be made

to keep useless information from remaining in the memory hierarchy

forever. For ease of garbage collection, the user should specify ·,

the nature of a file when he creates it -- wnether it may be

deleted when first read (temporary), deleted 'by explicit co~mand,

kept forever, and so on. It is felt that tpe burden of deleting

files is a responsibility of the user, and tpat the u~er should

be charged for all storage usage, whether core, di::~k, tape, data

i~__,.. ___ _

l '· . ' ... -----.....~----·---· .. \j·"' '
~ .. '
1 '

- 7 -

cell, or whatever. Although every effort should be made to

induce the user to release useless files, the system must expect

to have files which must be pushed down indefinitely in the

hierarchy without ever being recovered, as indeed we now keep

files indefinitely without ever using them.

Access to some of the data in storage must be restricted.

Not all files may be rewritten by all users. Thus,· provision

must be made in the software to protect information against

unauthorized reading, execution, overwriting and deletion.
' .

·Proposals for file structures incorporating fle~ible protection

mechanisms are contained in a forthcoming software committee . .
. 4-n .

document by R. Morris ·andAMIT CC-241 by R. C. Daley.· The
has

augmentation hardwareAfeatures which will aid implementation

of such proposals.

Despite the need for privacy, ease or use is a paramount

consideration. Passwords (programmed combination locks) should be

optional on access to files,. so that the user who wishes safe­

guards can obtain them easily, but the user who does not wish any

is. not encumbered.· File naming should be simple, and both names

an~ passwords should be chosen by the user, not assigned by the

system. .The file routines can inform him if he has chosen a

name already in his file directory and, ask if he wishes to delete

the previous file with that name. (We must assume that for any

files whose contents and names can be modified by two· or more

users, the relevant users will cooperate with one another.

"--....::;...--

- -.w: · ·f· ·-------~-----, · r_..
-...._ . .-- ---=.....--'

·--'------~-. krA W _. -·· L······ ·r
' -

... 8 -

No automatic features can prevent chaos if the users authorized

.. to mod~fy the file do not cooperate.)
__.

Closely related to ·~the problem of guaranteeing privacy

and freedom from tampering is the problem of guaranteeing immunity

to inadvertent clobbering of files due to hardware ano/or software

errors in the system. Core failures, for e·xample~ can be harmful

if the only map of the contents of disk is in core. Thus it

becomes mandatory for c:iisk~ to contain a file directory or:.its.

contents, although this probably does not need to be a complete

map. It obviously must·be upc;iated frequently, but probably not

every ti~e .. the core map is altered.

The notion or common files leads to the need for inter­

lock!:! on common c:iata. For example, user 1 takes file A and

begins to modify it. He sometimes wants to be able to assure
.

that user 2 cannot access A until he has completed his modification,

and does so by making it a nonread, nonwrite file for the·time

being. (He is the-q ther;·:only user who may change the mode of

privacy.) ,Suppose user 2 is in the process of modifying file B

(with exclusive access), but cannot c·oiJlplete the process until

he has access to file A. Since the hardware provides no help

here, there must be software interlocks or bypasses to avoid .the

freezeout that ensues when user 1 must access file B before he

can finish. There are presently various proposals f'or surmounting
I .

'~--- this problem._

.··· .,.:,. ·:.··· - ,,

·'··I " ~--:

- 9 -

2.2.2 Storage Allocation

'l'he need for dynamic storage allocation arises wn~n

·blocks of storage are required whose sizes or very existence

cannot be determined until run time. In such cases· it ;is often

not feasible to allocate a maximum expected block siz~ to each

. such block, simply because. the sum of the maxima is too large •

. In the 636 system, dynamic storage allocation is grea,.tly

facilitated by the segmentation hardware (see so;t'tware committee

document 71). For each such variable s~ze file of data, the user

may assign a see;ment which may pe expanded or qon:tracted as

desired, quring the execution of the: .. program.

All data addresses (and instruction addresses - see

below) are relative to the beginning or the segment in which

they occur. The relocation is accomplished with the aid of a

segment description which contains the address at which the

beginning of the segment is located, and the size of the segment.

It is easy to change the size of' any segment without having to

change any other segment.

2.2.3 Ston~se Management

In order to obtain an efficient multiprogramming

environment, it is necessary to~:keep to a minimum the amount

of time spent swapping informa,.tion in and out of core. The

crucial questions here are how and wtlen does information get

·swapped, what should be kept in core~ and how 1~ it found when

it is needed. In the 636, paging provides considerable help

't ~1
-,-,..~-

- 10 -

in answering tnese questions. Swapping in and out of core is

performed in blocks of 64 or l024 words (pages), and the location

,\'-.____/ of the page is kept in a page table. Addressing is done relative

to the page table, pages being located by the segmentation

hardware •. Thus it is not necessary.to put a program in

consecutive locations in core; instead, page~ of .the program

may be splattered ar:ound in whatever space is available, (The
~

saving in.relocation time required to arrange consec'l.\tive cor~

locations is .of course significant, ~spe()ially in a highly

interactive environment.)

.If a page is require<;i·which is not in core, the thread

becomes dormant while that page is brought into core. At this

point it may become necessary to swap another page out. Here

page table usage statistics must be employed to determine whom

to throw out. One useful tool for this is the use bit in each

page table entry, which is set to 1 by the hardware if the page

is accessed through this page table entry and if the bit is 0.

By software c·onvention.l no page will be listed. in more than one

page table entry, .so every access to a given page will set the

same. use bit.

If a page has beep swapped in, but has not yet been

used,.it is a:j..most alwaysdesirable not to swap it out, for its

use was dem~nded by a thread which became dormant because that

~; page was missing. (The exception involves the user who happens

to quit at precisely this point.) Pages which hav~ been accessed,

Iii ..
--· t"·~·'··.'"' ---

\ . ,,
·---·,_..,.,·

- 11 ..

however, are fair game for swapping. Some sort of ~ software

priority scheme is required; for these1 in order to give

·infrequently used pages less chance of avoiding sw~pping.

Proposed here is.some sort of weighting schem~ such.as

1 weight = (previous weight){constant)+(use b.it .. 2)
· i. •. · ·• ·'··: ··ini~ial· ,weight = o

evaluated for each page wheneve:r a swap out becomes neces~ary

(with all use bits being reset to zero at that time); weights are

stored in the core map, with swapping resulti~g for the page(s)

with the lowest weight. (The hardware sets a use bit to one when

its page is accessed.) An appropriate value ·of the cons1tant.

appears to be around .9 (weight range ±5) or .95 (weight rapge ;!:10).

2.2.4 Reentrance and Pure Procedure

In order to avoid multiple copies of a frequently used

routine (e.g. input~output), the 636 segmentation philosophy

permits a routine to be reentrant, i,e., many users may be in

various stages of completion of the same copy of the routine at

the same time. In order tooocomplish this elegantly, a single

'~·· copy of .the procedure pa:rt of the program is mac;ie availabJ,e,

and may not be altered (pure procedure) •. All variable information

is found in a second (data) segment, of which each user has his

own copy. In this way no interlocks are needed on the reentrant

, routine, and as·: many users may have access to the routine. as
\.~---··

require it. ...·'.:

- 12 -

A routine m~y be divided into ~ pure procedure part

and a data part for various reasons besides a desire to use the

'~ l_)' routine· in reentrant fashion. Debugging is easier if no changes

·Q·.<·.·."__, 'j .

A. v

'
occu:r in.the procedure part during execut;l.on; reinitiali2:ation is

easier, recursive subroutines are·conven:tently written this way.

For these reasons amongothers, hardware facilities are p;rovided

in the 636 for making a segment read-only, and the 636 software·'

will be desigried ~o permit programs to be written easily in
'·

this manner. However, there are many ca~es when it is clearly

desirable to. intermix the constant and varial,le parts of a
> I

procedure, so no rest'rtptions will be imposed to impede the

writing of impure procedure.

The standard 636 CALL, SAVE 9-nd.RETtrnN macros will

use a.stack (pusn..;d~wn store) for saving contents of registers.

Any I'OUtinewill be ~ble to use this stack for·teinporary data

stor~ge, so recursive programs. will be easy to write. The user

will be able to ignore the stack completely if he wishes, even

. to the point of saving registers elsewhere (or not at all) by ,,

redefining the CALL, SAVE arid RESTORE macros. He cannot discard

the stack, however, since it will be used by any system routines

he·calls. The contents of the stack should be self .. identi:t'ying

for debugging purposes. '{)'sers who abide by system conventions ..
will have the full benefit of system-debugging routines ..

,·

.

, .. ,.

[_:_:.1

f.~.-.· .. _··.1: t
1!

~~ lA

·a
'·]
r_1
F~

I
1~
(11

. ·l!i

lli
M;

~~-

1 ,J
~~

0 . .

•. t

... 13 -

2.3 .Time Considerations - Scheduling
I

There are ·many; general d~cisions which can greatly

influence the time response of .a time--shared multiprogramming·

computer system to its user needs. For example, what types

of serviae are to be offered and to what degree? .In addition·_

to normal batch process1ng., there will be batch ... processing .

facilities wlth short turn-around times and with guaranteed

delivery, which may. have to be negotiated for :in advance."~ ..
---..,

hopefully by dialog directly with.the computer from a console

rather tqan·through a clerk or-operator •. (In any event, both

of these human_ funct1ops snould be eliminated.from th~ batcp
.(

·processing as much as possible.- · The curr_ent neaes;:3~ty or)

mountip~ tapes will hopefully be considerably relieved by the_

increased size of storage.) :- Batch processing will differ from

its prei:sent ·rorm_, however~ in that jobs will be stored ·on

·_secondary (disk)., apd taken as desired.

In addition to normal take.-your.-chance:s interaction·

facilities for a variety or corisoles, there will. also be special ~

interaction facilities including guaranteed response time· and

guaranteed percentt:~.ges of steady-state central proce-ssor time~

again_ by advance negotiation. The question of how many interactive

users to allow at any time, or how to draw the line on-the basis

of"1oad rather ·than numbers of .users can e;reatly influence the

•time response •
' '

. . /"
-:·.··­...

..

)

()

0 ,.
I ~.

' .

0 . .

14 -

'!'he implementation of .th~ various commitlilents outlined

above is the task or the scheduler, which w111 be described in J

detail in a subsequent document~ Theus~r should be reminded that

the time-shared multiprogrammed env:Lronment cannot produce

essen'tially zero turn-around time ·for all users.. It· is the task

of the scheduler to attempt to satisfy tne varied user needs as

best as.possible. 'l'hus it becomes highly desirablethat each

user specifY: in advance of' his run (possibly by default) the

type or ser~ice he <iesires (e.g., turn-around time, guaranteed

de)ivery ,· special memory or input .. output ·requirements), along

with time, page, storage and·· possibly other bounds· (see software

. committee document 56 by W~ S. B+:own). In the event,his·rurming

time exceeds the tiine bound,. or his output exceeds ~he page bound.,·

et:C..~ he is so informed, allllCil-ltil~ ru.n•ci·& h~~ted,; ~<ld:11lJ$;,instructions •

.. . · In _addition to priorities engendered by user ·desires

and negotiations :with the schedule~, .there are various high
. .

priorities requ:tredby.the system. Highest among these is the

operator's absolute interrupt, which must override all overrides. ,,.

Here the override is not so much· fnstantaneous but, rather· ·.d·ec-"is;ive.· ..
. '

.Input-output -routfnes, on, the other hand,· must have a high pri.ority

in order to'.::keep the (e~pEmsive) input and output devices work'ing

constantly. Other examples are charging routines and disk dump

faciJ.ities, both with guaranteed completion.requirements,

. !
'

!
,. i

.. ·" r~ . ,.-~~ . .:....-;!
I

.. 15 -

2~4 Connective Tissue

In addition to specifications for th~ identifiable

,~"·\ program modules of which the software is composed, design of the
_/

636 must specit;y the way in which these various programs inter-

connect and hang together. This connective tissue consists partly

of programming conventions for subroutil.ne calls, for use of the

(~'; 636 augmentation hardware,. methods of storing and accessing
\ ' ·;..·

temporary data, and so on (see software committee document 68 by

R. M. Graham for details). In part ~t will consist; of code, as

for example the instructions which reside .in the fault .vector.

In part it consists of doctrines,' such as an arbitrary assertion

that the amount of master mode proe;ram will be reduced to the

smallest possible amount.

It is essential that the 636 software should be easy

to build, debug and modify, and that it be free of errors. It
•

should be possible to partition or reconfigure the (hardware

and/or software) system on the fly. Further, the system should

have the highest efficiency and the shortest reflex time (tim~ .to

react to urgerit.external signals).consistent with the other

objectives. The most important gl,lideline to follow in achieving

these goals, of course, is careful.advance planning and documentation.

Other than this it isessential that the software be modular and

systematic. The impact of this on the hard co:re software is that

() the hard core· software should·i;dev~ate;:asclittle::as possible· from

the standard conventions for user programs .

. :···
.:

' .

)

- 16 -

Thus, the amount of code which runs in absolute mode

or master mode should be minimized, and insofar as possible all

programs should appear to be a part of some u:ser :bi.m;!o~ .- ·

It turns out that this can be accomplished to a

surprisingly high degree; a more extended·outline of how to·do

this is contained in a forthcoming software C(>mmittee-document.

3. Languases and·Language.Proc7ssors

3.1 .Uniform Input Syntax and Uniform Input Proces~ors

In a computing system with many types of input

terminals and many different language translators, it is
. \

pighly 'desirable to establish certain conventions on.syntax

of input text, to give users of the system a ehance of

remembering how to talk to it. . These conventj.ons will be
r>

called a "uniform input syntax." FurthermoreJ a program

(e.g.~. a la:nguage transiator) which. may receive input.· from

a variety of terminals cannot be ~xpected to cope with all

the eccentricities of all types of input devices, Hence it
' . . .

is .necessary to have a "unform·.:input processor," to take input ,,.

text from the various devices and render the. text into ~
)

standard form for use by language processors.

The most basic asp~ct of input syntax is the ch~racter

set. Different devices permit character sets of different

si·zes, and of course the cnoice of graphics is essentially

arbitr-aryl The basic character set.for inpu~ to the new

software will .be the 64 character ASCII set, w·ith what are

.;···

. I

''j

. ;, :1

l
'.j
I -~
'.J

•i r\ 1 ~;J
:\
·'

17 ·;·,_

.,

essenti.ally the ASCII graphics~·.·· .(For proposals, s~e software.·

committee·document 50, b.Y M.· D. M9Ilroy •... See:also MIT·
' . . .

Computation Center document CC250 ·by·F. J •. Corbato~)
. ,

This .. ·

· will be a st;a!ldard. in the .following sense:.; a lansua~e
' .

translator ·or .other input program~ may assume .. ·that all in~ut
. device~ are. capable ·or· generating· .. any. character ·fro.m th.is s~t, .
. and need not be usabl.E!!iwith a more •· res~ricted ;character set. :

.

· Requirementsfor·a.vailability' of' chara~ters<otherrthari t~~se

64 will be considered as limitationi .. on· the applicability of
. . '

the program, to be explicitly stated iri.·do~umentat1on. This
. I ;· •, . . . ·. (: .

standard,. of course, impli.es that our current key punches· ·
. . . .

; must be replaced by 64 cha:r;'acter key punches Starid~rd ·
. . ' '

·. internal. charac.ter repres.entations for. the '64 ·characters will .
..

.• be those specified ·.bY GE for. the 9 bit character mode. Six.bit

charac~ers.will not normally~ be used·internally~
... , .
.. :·

. E~tended ch~racter sets (more· .. than. 64 characters) will·.

'be a.vailable on many input and o~tput de.vices; e.ve.ntually. a·

larger character set may be available on all I-.0 devices .. No · ,, .
. } .

standard set. of lar~er Size will be specified at present~
.

_However, to allow· for future extensions, all generally us~d

progra~s will use 9 bit characters, and all programs must assume

that any combination or bits can occur in a.9 bit:input character.
. '

The·treatment of input characters.of unspecifiedmeaning will be·

decided 9n the 'basis or context. ·. ·.

·. ':-·
·.J_•.:

·.' .

· ...

..
'.

i
'' !

ji

ll
j;
I

I
i·

I
I

I

I
I

----.--..-~· -~·----~.!

~ 18.-

Another aspect of standardinput syntax for language

translators is concerned with th'e conventions for . .1J1d1cation

r~ of comments, literals, sentence boundaries,~ labels, field
"->

boundaries and so on. It is important for tutori~l purposes

that an attempt at unification be. made in this area; the

standard guidelines are peing developed. Current proposals·

() in this area are contained in software committee documents 33 .
by R~ Morris, and 39: by N, M. Haller ..

~.·

The objective of a unifor:m input syntax is to ease

' ~
:

the learmtng and memory task. of all.programmers. The objective·' . ·

of a uniform input processor is to ease the efforts . Q!' compiler .·.
J ...

writers. Slightly differing proposals. for a uniform input ..

processor are contained in software document 34 by ~. Morris,

and document 39 by N. M. Haller. A resolution of the differences

is now in progress;. and the resu).ti:ng specificati.on ·wiil be

implemented.

In. addition to·the .forms of input provided by the

unit record .input and the unifor~ input .P~ocessq!', there will

be ·available to the user program a basic input mechanism··

c) which permits him to examine all the input information r·eceived

by ·the computer, without ~1 tera ti.on. This form of inp\lt permits

the user program ·to: .interpret the input stream in ~ny ·arbitrary ·

fashion; it is necessarily highly device-dependent. For example,

C\
I

_ _, __

. . ~ .

teletype input can be passed to the user program character by

character, a~ it is I!eceived; this is not possible with·input

from magnetic tape.

. .~~.

··~.' ;
• ..

·-....,..---,---_,:.,..,.......,_..,.,
.:· '

I'~

\.'-)

~
1. ·\

. ___../

- 19 ..

'·

3.2 The Assembler, Binder and Linker

In the 7000 series .machines a program in some source

language is prepared for ·execut_ion in tw~ steps. First it is

translated into an intermediate language format, and then it

is loaded and linked to other programs. This two stageprocess

was devised to satisfy requirements of convenience and

efficiency. ·For the same reasons of convenience and efficiency,

the corresponding process on the 636 will be brok~n into thre~

stages rather than two. · These are. 'tiranslation, binding and

linking. The advent of automatic relocation and segmentation

hardware makes it.possible to form a final version of the\

. program text without knowing where in core the program will

reside. The desire for linking during execution, coupled with

the requirement of reasonable efficiency, makes it imperative

that linking should be performed---separately from the other.tasks

-of instantiating a program. On the other hand, conven'1:ence and

efficiency require that programs be-translatable in pieces smaller

than the units ~andled by the linker • Hence, in the 636, the .,.

translation process will. usually be followed by the binding.· of ·

translator output texts into segments; the bound text normally

will be in its final executable form. Then, as execution proceeds,

the linker will be invoked at appropriate times to·~stablish

intersegment references •

. .. ·· ;

[I

.-.;

'
'

i
i ~
i:

Ybi<- ''(:...,, · .. "¢G<M¢"' tif'P

- 20 -

3.2.1 The Assembler

The basic function of an assembler is to provide a

(:"''''"'1 convenient flexible means of specifying machjlne language code.
"'--/

For this p~rpose a one-to-one, field-by-field translation of

symbolic to binary is insufficient, because the amount of

repetition required would be unduly high, Hence, a facility

1~"~\ for handling macros and text strings is required. It turns ' . "-.._/

r-,,
t' :i

~ ~:/

out that much of the apparatus for pseudo-opE~rations and

generation of output can be subsumed within an appropriate

macro and string facility, and this; of.course, increases the

flexibility of the assembler while decreasin13: the effort '

required to write and maintain it.

Another function of the assembler as used at BTL

is the generation of code for machines other than the

computation center computer. This. can be done, if the·

assembler is properly constructed, by substituting new tables

and subroutines into the assembler in place of the standard

ones. In order ~hat these substitutions be possible, the

assembler must be designed so that the:·relevant ·tables,

subroutines and de~ision points reside in clearly identifiable

places, and are not dispersed throughout the entire·structure!

of the assembler.

Thus, the assembler will consist of a skeleton

(-"') padded· out by appropriate subroutines and tab~es, which
..._....,.·

---~-,......--.........,--- -~--------~--- ---,-~---- -----

{.

,,--._\,
I i
\,_j.

. t .

- 21 -

accepts input text and puts out text for use by the binder •

. For further details, see software committe.e documents 29. by

D. J. Farber, 37 by R. E •. Archer, 33 by N. M. Haller, 48 by

D. E. Eastwqod and 64 by J. P. Hy~e.

3.2.2 The Interface Between Assembler andBinder

The text which passes between assembler and.bitnder

carries a variety or different kinds or information. · Among
. . .

these, for instance, are text strings in finap.rorm (e.g.\
. '

an assembled constant or op code)., :t;ext strings requiring
:'

alteration (e.g., a relocatable address} together with a

specification or what alteration is to be made (relocation bits)"·
...

external symbols whose equivalences'm-ust be_supplieci at binding

time, internal.symbols with. equivalences to be supplied to other

routines at binding time, storage allocation ~nformation (e.g.,

loading_ origins), and other miscellaneous ·1nrortriat1on~ ·.·The

format to be used as interface between translators and binder .

has not yet been chosen, but some of.~he desiderata are ae
I

follows:-;.

(1) Tables~ or isolate'd table entries,· should be. explicitly

identified by header information; e.g., relocation information

should be preceded by a·header indicating that relocation.

information follows,· and how much or it there:.is. ·

·· (2) The structure is to be. open-erided 1 in the -sense that

header formats should allow later inclusion or an-arbitrarily

large number' of n~w types of tables.

·, .

·.:t.• •

r-------. ~-

: i
) . ~~

/-, ..
{. ';

\... . .;. . ./

0 j

:;
"'·
'

i
ll
'

I -----··-. -:-
1 .

.... 22 -

(3) Check features (e.g.~ check sums, sequence numbers)

will not be included as part of the format, _but will be inserted,

verified and deleted by I-0 routines as may be appropriate to

the various recording media.

(4) The interface text will not be constrained to be

intelligible to humans.

(5) The interface text will be formatted so that binder

output text is acceptable as ~in'der input text, in order that

. a:.segment may be bu±lt Up in multiple passes through the binder~

Text st~ings whose final form in cope can be completely

determined at translation time should appear in essentially
. .

that form as input to the binder .•

3.2.3 The ~inder
'l'

The job"of the binder is to accept one or more modules

of text produced by translators (or by prev:i.ous passes through

the binder) and combine them into a single larger module~- .

which will typically be a segment plus its linkage information.

The binder also provides the interface between source languages

and the system for generation of debugging dictionaries, data

structure descriptions, etc.

The two major tasks per,formed by our current loader,

are establi.shm~nt of inter-module references and relocation of

addresses. These will also be done by the binder; however,

int~r-module references will be direct (as in a linking loader)

I
I
I '
i

'
!

i

i:

- 23 -

rather than via transfer vectors.. This will permit assembly

of programs in modules which do not have to pe complete

subroutines~ and will also allow source language layout -of

data storage to be compiled independently of the procedures

which reference1the data.

The binder will have a new 1 and initially quite limited 1

.facility for expanding macros at binding time. In the initial

version such expansions must obey the restriction that the length

of text to be generated at binding .time be known at.translation

time. !t is possible that this restric~ion may. be removed at some

later date.

The binder may also include 1 either initially or

at some later date 1 · a facility for accepti.ng assembly language
<_ •

source text 1 shipping it to the assembler 1 and then ·binding

the resulting module with other :modules.. Whether this . fac·ili ty

is included will depend primarily onhow easy it is to-implement.

3.2.4 The Linker

A procedure segment produced by the binder is ready
'·

for execution. Inter-segment references have not been .

(-,) established 1 and will not normally be established before
'-~

execution begins. Instead 1 the linkage info:rtmation of the

bound-segment will be placed in a linkage segment 1 ·and will

remain unlinked until an attempted inter-segment reference

causes a fault. (~ee software committee document 68 for details·

of linkage segment format.) When the fault occurs 1 the linker

,

'tr"
. l
:·!
. j

'!
.· l

l
'! :.I
.I

!
·j

i
. '

'l
I

; !
. '
. i

1 1

J

f f· ---· --··- .. ---------.. ----.------~--·-··------'---~------------~. __ ..,! _____ ~---------· --------,--·------------·---------

,l~....,,

\. ... ~ .. ~./

.--. ', _-;,, '• :*'- ":-·., ... -"':''"'"""'~·'··'·'" ~i,, M. ,,.,, .. ,. •Nw• ,;,,;~··,' '"" ·.·-· .., ii\· .. !":~." ... · ~· •.. ,.,._.,, .. · · •·· ,.,. '"· ·

. ~ . \.~·

- 24 -

will be invoked 1 will retrieve the referenced segment if it

is not alread~ available; will implant the linkage information

ot the referenced segment into the linkage segment, will link

the desired in~ersegment referenc·e, and then return control

to the program which caused the fault. If desired,- it is also

possible to link at one time all references in a given segment

to a pa~tictilar outside point.·

In addition to this automatic mechanism a number of

explicit calls will invoke the linker. One of these will be

a call which requests 11 Link such~and;..such a reference, and

· do it now. 11 This will cause the same linking action as would'

· a raul t 1 but under explicit· program control. This call has
.... . ;-

various uses., and is essential in some cases as a substitute

for the automatic linking .. Another call which involves a part

6r th~ .linking mechanism is a request for a new data block in

an existing segment. This requires establishing or changing

an inte.rsegment pointer. This. type or call will be provided . ~. . .. · ..

primarii'y as E;n aid to handling the NPL ALLOCATE statement. :r
. '

Since the input to the linker will be in a·rorm

(~; which could also serve as in~ut to the binder1 a segment

being instantiated by the.l.inker':: ~ill be accompanied by much

information that the .linker need not make use of •. To what
)

extent this information should be ·discarded and to what extent

it shouid be put in some convenient spot for the use of debugging

• 4.,

')

~ I
I
i

: .j

:>!

!,t
: [;
'·I
''

:. 'I

i
! ii
;·,;
"

fl!
~ l:

;
r 1
[l
r~
H
1-:

I"
I
I'
I:
I

I .
l·i . , I ..

l!

I

I
I:
I:
I.

I.
i' I.
1:
i!
I: I,

I
I'

l
I

I

-(~-~~)

'-.,.;;/

,--·-,,
(__)

- 25 -

aids is as yet unclear. However, this extra information must
. .

be retained somewhere to permit unlinking and subsequent.binding

or reli~k~ng of segments already linked.

3.3 Bootstrap GEM

Because the new assembler and binder cannot

reasonably be made available before late 1965, it is essential

to have some preliminary mechanism which will generate code for

the 636. This will be a combined assembler-lbinder, currently

known as bootstrap GEM. Bootstrap .GEM will 'be. a slightly revised

GEM assembler with a loader grafted.onto it, to produce 636 code

ready for linking. Because the binder 'is included irt the .. assembler,

·bootstrap GEM will necessarily .produce one·and.only one segment

per source deck.

Bootstrap GEM is being produced by GE, and should be

completed in May or June of 1965.

3.4 Conventional Narrative Algebraic I.anf5uages

Among the languages available on·the 636 will be

Fortran· IV, COBOL, artd NPL" (or MPPL, or whatever it is called).

COBOL will be available only through the GECOS

submonitor, and will conform to the specifications in the

GE 635 COBOL Reference Manual CPB-1007. It will be implemented

by GE.

Fortran IV will be available through the GECOS

submonitor, and may also be accessible directly from the main

)

-------~---.. ··-· ----~----·......--,..,--_ - ___ _,_.....,...__ -...,-.-~-- .,...--~---,--~-----,.-.---------·----~-----.,-- -- ----~---~-~-~,----···--- ----···

;
!.
I .
I

I
I
f

I
I

f .

! •
f-
f • ~

. - 26 -

operating system; GE is now considering whether this is feasible.

GE will implement Fortran IV as described in the GE 635 Fortran.IV

reference manual CPB-1006.

An initial version of NPL will be implemented for Bll'L

by Digitek, for April 1966 delivery. It will follow the IBM NPL

Technical Report 320-0908 except for certa;l.n IBM modifications

not included in the ;report, minor deletions by BTL (e.g., sterling

currency a,rithmetic), and certain BTL extensions. For details

on the 1536 NPL and its differences from theL IBM technical report,

see software committeedocuments 65, by Digitek, and 66 by

M.D. Mcilnoy. A second version of NPL will be delivered by

Digitek about six months after the first version .. It i~ to be

expected that further versions of NPL will be required, since
..

· NPL is a novel language in some respects, so that both"extensions

to the language and improvements in compiling techn:Lques are

likel-y to be forthcoming.

In addition .. to COBOL, Fortran IV .and NPL, a MAD
I

compfier and an ALGOL compiler will probably be available for

the 636, implemented by MIT and GE. No details are yet

available·, and there is little rea, son to 'believe that these

languages will be widely used at BTL~ •

Fortran II will not be available on the 636 in any

form. The extreme difficulty of implementing a Forttvan II

compatible with our current compiler, together with the virtual

coincidence of function of Fortranii and Fortran IV, preclude

' . l
l

()

the existence of Fortran II .. Some program will be provided
. . .

to aid conversion of Fortr~n II·programs to Fortran IV.
:-'

3.4.1. Incompatibility of Algebraic Languages.

It appears highly probable that no.procedurewritten
. .

in. Fortran IV, COBOL,. NPL, MAD or ALGOL w111· be able to call··.·

directly any procedure written in another of these languages

-This state of affairs appears. to· be .·largely inherent. ··in the

detaj,led structure of ·the source ·languages themselves, whic.h

require different mechanisms and different ki"Qds-. of information

· for transmission of. subroutine arguments.·
. ~-

It is possible that interface·subroutines can be

provided to .allOW argument transmission in manycaseSj the

most hopeful being a call from.a.Fortran IV.program to anNPL

subprogram. This technique and others will be ,made. av~ilable .
. .

wherever· reasonably possible:, but.· details. will. not :·be available .
. , ·-

until iate 1965.
.i ~·

3.4.2 NPL Subroutines ••.. • r

In order for the full NrL Language to be available,
. ' .

a large number•or subroutines will.have.to be provided for use

byNPL object PI?Ograms; These i~clude various numerical·
. . .

packages to performarithm~tic of various types ~nd precisions,

a_large package of type conv~rsion routines, dynamic storage

·. allocation, diagnostic and debugging routines, ·stack usag'e and

IO routines. These routines will be so written and embedded

:i..n the software as to make ·.them ;available also to programs

. ··-' .• -~- ~-.. ·-····"--·- .•. .,_ . ~, ... ~-- ... ~7 ~. , ••...

i
I

' i
i
'

J
.i
·I
I'

r .. --- ,
! . -...............

r
f
i

' '-
~-· i

! .

'

\ .
I-_.

[
~-

i
1- :

I
I :
t . '

I· I.
:' ---r

r

i
I
I•

I
t
r

I
I
I
1-

r:~~;·~'!.

(_~_;.

\ c:;
t
r:
f:

__...__._~---~ <; '1

-· 28

written in assebly language. Argumentsand argument transmission
- '

techniques will be specified by Digitek iri the course of NPL

-- -·. development. Further, mechanisms coml)arable to the asynchronous
r-

facili ties of NPL will be- available for use by _pro~r>ams writte-n

in assembly language.

3•5 Microfilm and Graphic Display Programs

Because of t.he ·diversity of visual ·display devices.·.

_ which may eventually be. ~ttached to t!le 636, and be~ause ._ of. the

transmission and buffering requirements of visual display devices,

it iS desirable tha~ the format of d~ta ·.for visual d1spl,ay

··;..., ..

should be sta,ndardized in a form that is·compactand conve~ient
from the ilfiewpoint of a· programm~; oriented toward display -

hardware.-

• However ,• for the -~er ·who ·doesn't c·are about the·

intricacies of display hardware, and just wants pictures, : -.-
·.

a hardware~ oriented language i~rmat is i~appropr.~a~~·· · Fo~ the·
.. .•

user there.must be a set of p~i~itives available inFortran,
. -

NPLand assembly language, analogous· to our current system

plot routines. The detailed form which such f.acilities will- ·

nave .is not yet clear; one. proposal is th~t . of F. W. . Sind en ··

- in a subsequent software committee document., There are !!£
current plans to provide a compatible- replica of·:;the· microfilm

routines in BE SYS7.

The·use of. such primitives ·is unduly. laborious
. . . .· ,. ·.

··- · for many standard application~.,· and it will be necessary to.

-~·

'
' l

. i
i .

f'
[:

[:

- 29 -

provide packages of standard plot routines to do, for

instance, automatic scaling, labeling and plotting of one

dimensional arrays. This job, however, is of comparatively

low priority, and will probably not be started until much

other software effort·i;is complete.

3.6 GECOS (Comprehensive Operating Supervisor)

GE. will provide f.or the 636 a version of GECOS III

which runs the 636 as if it were a 635. This monitor is

essential as a fail-safe against software schedule delays

in checking out the new 636 software, and pa.rticularly in

efforts to determine whether a particular trouble is due to

· hardware or software. This stand-alone GECOS, however, will

not be useful after cutover to new software. At that time,

facilities compatible with GECOS will have to be provided within

" the framework of the new software.

Two different proposals have been contemplated for

doing this. The first envisions an "encapsulated" GECOS,

which is essentially GECOS III with almost no receding; sub­

ordinated to.the new monitor by forcing GECOS to run in

slave mode as a single segment throughout an~· entire batch of

user programs. GECOS master mode functions would be performed

by the new monitor as it catches faults caused by GECOS' attempts

to·'issue master mode instructio~s. \ This alternative ~as the

advantage of being simple to implement, easy to debug, completely

compatible with GECOS_III for the635, and easy to update·to

maintain compatibility with 635 GECOS,

·.;•:·

. '
-~

/~-~~~

"-~ .. >

.i

('\
I .

\

l'.
I
I:

I .

- 30 -

The second proposal envisions an "articulated"

GECOS, partly rewritten to take advantage_of the segmentation

features of the 636, and the file handling strategies of thie

new software. This would permit ~EGOS to be scheduled-more

flexibly, and GECOS storage to be allocated more fle;:1,bly,

than would the encapsulated.version. -The articulated version

·would also permit users of GECOS.to take advantage of certain

of the new softw,are features. -For example, GECOS runs could.

· be s·tarted from typewriter consoles; data could be passed to
t

GECOS runs from files constructed· under. the new monitor

facilities; some subroutine packages constructed for the new

software could be used with GECOS.

Compatibility of 635 GECOS with articulatedGECOS
. .

will be harder to achieve .and maintain.th~n with encapsulated

-GECOS. -However, since GE proposes to do the implementation

and maintenance 1 and since ·GE favors the art.iculated version,

it· is advantageous-to proceed with the articulated GECOS.

GECOS users, ho~~ver, should not assume that any particular

new feature will be available in 636 GECOS until that feature

is specifically guaranteed.

3.1 . Special Languages

The 636 software will include SNOBOL1 ALPAK,

Simscript and BLODI. For none of thepe is a detailed

specification yet available. Simscript will·be essentially

I --··--·--····-·-·-·--. --------· i .

- 31 -

the same as the version now in use·on the 7094. BLODI will

be basicallythe version recently completed by B. J. Karafin

for the 7094 (MM-65-1359-2). ALPAK will be JI.LPAK B or some

extended version thereof. SNOBOL will initially be an

adaptation of SNOBOL 3, and will subsequently be extended.

Of these translators, the one of highest urgency

is SNOBOL, which is needed at initial installation date.

Simscript will also be available at initial installation,

because there will by then be a version of Simscript supplied

by GE and running under GECOS.

3.8 Command Language

The command. (control card) language of the new

software will be a na~rative language without looping
.. ·

capabilities, i.e., ·it will be similar to.the control card

language of BE SYS7 and to the command language of CTSS

. (MIT's Compatible Time-Sharing System); it will not assume

(as does GECOS, for instance) .that all control cards for a

run will be readand interpreted before execution begins.

Command format will conform to the.uniform input

syntax (i.e., free fields), and therefore the line layout

will look much like the current layout of C'l'SS commands. In ·

general, the command language can be expecte-d to include the

sorts of commands currently available in CTSS, plus other

cominands,for handling files·(e.g., rewind), and a-~'Umber of

I

I
!
J.

I
~
~
f

f
l
I

l·
i'
I
I<
;

'

~- ·----~·~~~~"""'"''"""'""""-···"·1 ,......f·""""~r_l~~~·._...· ..._~~·~~ . ~-,·~-.. -

.-;

\

··1
1

~ -
- -32 -

miscellaneous commands (e.g._, unload). There will also be

various declarations, includ~ng file declar~tions like the

DISC ancL.'TAPE declarations of GECOS, ·and varlous control

declarations (e.g., a declaration like the LIMITS declaration

of GECOS). More details will be·available in May 1965. A

detailed discussion of a framework for command language

implementation is contained in software committee dbcument 77

(the SHELL: A Global Tool for Calling and Chaining Procedures

in the System, by L. Pouzin, MIT Design Noteloook, Section IV) .

. 3.9 Utility Packages

3.9.1 Elementary Functions

The elementary function routines:now in9orporated in

GECOS may or may not use satisfactory algorithms. This is yet

to be determined. However, they must be modified for the new

software in any event, to conform to calling sequence modifi­

cations dicatated by 636 hardware.;; In addition, since NPL

and Fortran will use different conventions for argument

· transmission, some or all of the elementary function routines

will have to exist in two versions, one for Fortran and one

for NPL. Moreover, routines for multiple precision arithmetic

and for multiple precision elementary functi.ons will be required

for NPL.

Since the number of routines required for elementary

functions will thus be quite large, and since the speed of the

routines is important, they cannot be ~ade to work correctly

r
!

"I

l

I
l

·I

i
.I

I
I
; . ~
l

.\ .,

' :!

.·.
"

'll I

'~-·---__ ::~

;""'-· ,

l,, ___ .. ··

~~

!
'

- 33 -

by conventional techniques of hand coding and manual debugging.

Hence, it is very desirable to have generators for elementary

function routines, and semi-automatic testing procedures for

the resulting programs. Whether adequate generators can be

developed on a time scale consistent with hardware development

is doubtful. Nonetheless, the development of generators will

\,~, be pursued, since a good generator will be very useful even

;·-----·\

l.)

if it is completed somewhat late.

3.9.2 TyPe Conversion and Multiple Precision

For NPL it is necessary to have an extensive package

of routines for type conversion. (e.g.., BDC and DBC) and for

multiple precision arith,metic. ·These routines will have to be

written fii.otn scratch; whether they will be done by Digi tek or

by BTL is not yet decided.

It is possible that these routines will also be

usable for Fortran I-0 conversion in place of the package

currently used by GE 635 Fortran. If.the Fortran I-0 package

can be thus eliminated,(system maintenance willbe somewhat

simplified.

3.9.3 Other Numerical Routines

Depak (differenti~l !:.qU:ations) will be running on the

635 under GECOS by the time·of 636 installation. Because of

this, it is not essential to subordinate Depak directly to the

.new monitor at first, though it will be done eventually. A

:···

-·----- -------. -~~·---~.' ----------·~--;--------~. -.. ~--------------------·----~--------·-----c.----··-·-- --·- -----·-

t --
1
I
l
l
1

I
:l
.j

l
I

l
l

; 1
i
l
I
l
J

'1

. ,.
' ' !

, r·-.,_
_r,_j).

·;

. -~

.. ·;

'

- 34 -

matrix package must be provided, .including eigenvalue and

eigenvector and matrix inversion routines. These routines

must be constructed and .tested with great care, and· BTL will

have to devote substantiai effort .to them, even if GE does the

code. Similarly~ BTL will have.to exert effort -on techniques

for root finding, .·since good root finding techniques are not

easy to program. ~he same statement holds for any routines

we may need for such jobs as evaluating the hypergeometric

function or f:tnding solutions of simultaneous non-linear

equations. Such programs involve_a substantial amount of

research in numerical analisis. ,

3.9.4 Statistical Routines

The development of statistical routines· for such

purposes as analysis of variance and multj,.ple regression is

beyond the competence of the computation center software

groups, and mpst therefore be left t.o the various user groups
j

sophisticated in practical statistical methods .. Development .

of a set of routines fbr use in data laundering is an urgent

task, and could be undertaken by any of a variety of groups;

it is hoped that competent people with both the enthusiasm and

the time to do this job will appear.

3.9.5 User Input-Output

Input-output routines in the new software Wil1t be

invoked in two different manners. The auto~atic filing and

retrieval req~ired for operation of the single-leve}- store will,

--:··-

--------·------. ·--~ .. : -... --~.

'~ ·t·· .,
~-

1

t
-1
t.
ll
I.
I.

!;
t:

r
li
li
li
I!
li
jl

I
li

I!

~ \I

I\

\i
II

II
a
\i
II
ji
!l
\i

h
\!'
il

i\
-- _;.

/-:"-,'--,

\......_)

. :.~

j.j
I' ti
~~

'()

. - 35 -

of course, use the basic I-0 routines. There must also be=·"

facilities available for user programs to control I-0 explicitly.

The calls available ror this purpose will be constructed for

.specification by·exception; that is, any parameter which is

not ~pacified by the user program will be given some default

value .. The full specification of :the characteristics of a

data file might be, for instance, ''tape, 200 BPI, even parity,

labeled, 14 word records." However, for most files the user

doesn't need to or wish,to sp~cify such detailed characteristics.

He may wish to dec~are simply that the file is serial, or he may
~\

wish to make no statement at all about the propertie~ of the file,

and let the operating systein choose. It is intended that the

new software-will allow the user to employ any of these degrees

of specificity.

It is worth noting that euentually, although perhaps

not in the !'irst version, the I;...O may.pass through some inter­

mediate transcription.medium, at the convenience of the operating
;,

system~ This gambit, Which may be viewed as· an extended bUffering

strategy, would, for example, deposi:t ·an output file on disk

until a seven-track tape unit becamr available, and then copy

the file. This kind of strategy' can help with scheduling o;f'

peripherals. ..
The type .conversion which is now associated with some

forms of I-O· is in pr:i:nciple an entirely· separate function, and

--~·· .
..

.:.
" • ..

;--

::.;;
i!'

. '
i

. . ~--. -----~---..--'"":"--- -.,........-~. ~-..,.-;--~~-~--:·-·-·-·--- -----·-·.· ---- i

I·

l:

I;
r;
1:

- 36 -

will reside in the package of routines used for type conversion .
•

From the point of view of the user, of course, conversion will

continue to be available as part of I-0 operations, as well

as separately.

3.9.6 Other Utility Programs

A sort-merge package and.linear programming package

will be available under GECOS, provided by GE. There are no

plans to make either of these packages functton in. the new

software except via the GECOS submonitor.

A context editor like the one currently available

in CTSS will be part of the new software. It will be

programmed at MIT.

4.1 Performance Statistics and Accounting

For the benefit of computation center staff and

systems programmers it is important that provis:l,.on should

be incorporated in the software for gathering of operational

· st,tistics at v~rious levels of detail. This is even more
. .

desirable with a multi...:'access, multiprogrammed system than

with our current batch processing mode. Such parameters

. as percentage of:.!dle time, percentage of CPU time consumed

in paging anq current drum·and disk occupancy will be very

hard to obtain unless p:J_ans are made from the inception of

the software effort to have them gathered. Estimating the

effectiveness of scheduling and paging algori"thms involves

obtaining information on such items as queuE~ length and

. .
'" --···-·····--.-~-------~-~------:-·--.:-·--:-- -------- -:·-··· -~------------- ------:'--·-··----~-------~---------"'··--· ---------- -----:----------::-,-· ----------···---' -------- ·----------- --

j
' ·1

!

i
l

I
!

- 37 -

waiting time distributions. In addition, it should be possible

to keep track of users or certain routines (e.g., NPL, the

microfilm package), obtaining general information such as who

did what, when, and how did it turn out.

Unfortunately, past experience has indicated that

the measurements one wants to take .are .frequently those that

were not thought .of in advance, and are therefore hard to

make. In this area BTL can profit by the experience of

Project MAC on their current time-sharing system.

Accounting and charging are related to performance
. . \

statistics from a programming point of view, since much of

the information developed for either application is relevant

to the other. Accounting and charging practices as such enter

into software design only peripherally. It is necessary for

the software task force to ensure that the information requ1r ed­

for accounting is available and is developed, ·,,_;;c It is of great

concern to the software designers that charging practices should

. conform with software d·esign objectives in the sense of tending

to balance the load from the system des:tgn point ;and:· .. not causing

substantial inefficiency. (Incidentally it is desirable to have

lower rates for low priority use: .in order to help equalize the

load.) ..
4.2 DocumentatiJ,on

Documentation of tp~ 636 software will be a large

_part of the total software effort. Six categories of

documentation need to be distinguished:
. :·
·.;.•.

. i

I
1
I
1
l
' <

·. J
j.

. !

•' i. ,,

l ·. ..
...

j;
I:
[:
I:
I ,

' I:

I
. I:
I. I.

!
i

I

·/-:-"\
l
"~._ __ .:.-·~

(/~-:-' .. \
\ ;'
........... .,•"

~ ~~ ·-··Vi_ .. ---.... ~·" "" -- ~···ll 'i
._.

- 38' -

1) Interim working documents, generated as a part of

the design and impleme_ntation process.

2) Specification documents.

3) Maintenance documentat;J.on, intended for use by the

programmers who have to keep the software running and m~e

changes to it.

4)

5)

6)

User reference manuals~
I

Tutorial documents for new users.

Published papers.

The· interim working documents· are currently being
\ '

produced in considerable numbers, and this process will continue

throughout the project. Such documents as this one are intended

to be of .strictly ;temporary interest to a rather limited group.

It would be unreasonable to expect that the ,(.,.;;:.) :;:· ~
...

·o:ther classes ot .documents will be. produced entirely by the

programmers who.·write the software. Such documents will be

written by a group consisting partly of the programmers who

produce software,; and partly or trained documenters' from

such areas as the maqufacturing information groups at BTL.

Our objective should.be to have user reference

manuals produced on the same time scale as the software

itself; maintenance documentation will lag somewhat behind,
·•

but the lag should be as short as possible (a few months) .

Tutorial documents will undouptedly come along on a slower

·-"!··

/

:l·.
.,

J ,,
i
j

l
;j

j ' . • .. -~----·-··· ··-·- .. - . - .. :l ! ~ -------· -- ---------------------------.. --..:-··........__--.......... ---------------~--~-~---------------------------:---_..,...------------..... ----. ·-------- --.- ··- ..

,.

'
·')

'i.

' j
·' .. ~

' '

(~':,
-... ~·--·

l~\
'. I
''<.:...-:-~

- 39 -

time scale, since they will have.to be revised after

experience in training new ~sers on a functioning system.

A sixth type of document which we must strive to

produce is published papers descr~bing any new and interesting

aspects of the software. It would p~obably be unwise to

invest the project with an aura of 11publish or perish. 11 It

would be equally unwise to ignore the importance of readable

published accounts of new developments embedde'd in the software.

4.3 Programmer Education

Some four to six months before the new system becomes

generally available to users it will be necessary to begin

explaining in detail to prospective users what facilities will

be available and how to use those facilities. This will be at

.a time when.reference manuals and tutorial manuals will be

available only in part; and probably in a not very satisfactory­

form. In· view of this, the system programmers must consider

giving preliminary courses to users, and generally helping

users to learn about the new system. This effort should be

beneficial, in that it will provide feedback from users on

unacceptable or awkward aspects of the software. It will

also be a considerable hardship to programmers engaged in

the final stages of coding and debugging.

4.4 Software Maintenance Responsibility

The degree of acceptance which the·new software

receives will be directly related to its usefulness. Its

'·
-:···

'.

. ---- ---------------------------.!-~------
.

~---·--"'0~---------------~------~-------. -·-----~ -----~----------------

i
!

!
!
:
I
I

I

I

I

l
I

I
j

I
!
I
'

;.,;>' c -. ~---:...... ·-·----'-'--·--·--·

I

. - ~

,_

- 40 -

usefulness, in. turn, will be considerably reduced if it

doesn't work. Since a great deal of experience has shown

that no large program is ever free of errors, the software

will have to be maintained.

General Electric intends to assume primary responsi­

bility for maintenance of the 636.software, including portions

._____ written at BTL as well as portions written by MIT and by GE

itself. However, much past experience 'has indicated that

programs as large and complicated as those involved in the 636

software can only be maintained properly if the original

designers and implementers are available to assist in the work.

Thus, we must expect that for a period of a year or more aft~r

initial cutover of the new software, all the BTL I>epple

involved in its production will have to spend part of their time

on consulting and maintenance.

4.5 Debugging

Debugging seems to be one of the fundamental problems

in the efficient ope~ation of the entire system. (See software

committee document 57 by W. S. Brown.) Its effective imple-

mentation influences almost all parts of the system, and thus

cannot be isolated to a, single part of the system. The most

effective techniques of all, however_, are those devoted to the

prevention of bugs in the first place, and thus it seems

paramount to enforce certain standards on the system itself

as well as on its users. These include imposing stringent

•• • • o< ~· • • ' •• ,. '<

LJ 'i;
~ _.;._..

- 41 -

requirements on documentation (see 4.2), having available

analytic tools such as RUFUS and FORTRACE, and generally

taking out of the hand :x:· -~.:Jc: ; 1/' of the user tedious

details in which he is likely to make mistakes, such as

subroutine calls, input-output handling, etc. It is, of

course, also to the user's advantage to use that language

which is most suited to his program.

To help in the detection, location and extermination

of bug~, various software facilities are desired in addition

to sets of standards (the latter including the requirements of.

error checks, ~elf-identifying structure~, the ability to

replicate a run at a later time). Two types of facilities

are required. One is an editing and debugging facility

peculiar to each translator and language being used. An

example of this type is MADBUG (see MIT document CC-247,

MAC-205), for use with the MAD language. MADBUG in its current

form provides for controlled execution with insertable break­

points~ source language editing, provisional changes~ and

interrogation of the resulting machine code at a symbolic

level. (A successor of MADBUG for the GE 636 will exist,

but presumably will have little use at BTL.) There presumably

should be one such facility for each translator in the system,

i.e., one for NPL, FORTRAN, etc .. They will all have in common

the table of the assembler, linker and binder, and will probably
. ··:

.~... •• < ·~

.'

~_) -·-·--·-····-··--·-··~---•..:.-.-.---·--~
.(

...-·

- 42 -

require other tables as well. Each translator-should have

appropriate symbolic print routines, geared to the data

struetures by providing the appropriate conversion and

format, and inserting identifying names where desired. Thus

the design of the respective translators depends to some

extent on debugging needs .in order to assure that:.'relevant

information is available.

A second type of facility involves the system directly,

and is an extension of OEDIPUS (W. S. Brown, Comm. ACM, June, 1965).

The translator and utility packages depend on a considerable

amount of software, here called the supervisor. Some of this

software is directly concerned with debugging, such as

mechanisms for symbolic snaps, for setting and printing of

remarks and for post-mortems. The supervisor will also contain

coarse and fine dynamic storage allocation, the stack, ~nd

scheduler. The contents of the stack, the data structures

which have been dynamically allocated, and the scheduling

information must be available to the symbolic snap routine.

The symbolic snap routine will locate a data structure,

identify it (data structures will be sel~-identifying), and

will consult a tab.le to find an appropriate conversion and

output routine. The table must of course be provided by

the translator or processor being used. If no appropriate

0.:" -~ _____________ ..:._._.:._ _________ _

t
. I
~_...-

- 43 -

entry is found, there will be a standard default output

routine. It is up to the writers of the translators and

utility packages to take advantage of the above debugging

facilities. The facilities for debugging and their

implications on the rest of the operating system will be

discussed in a forthcoming document.

MH-127l_PGN_AK
1273 VAV

P. G. NEUMANN

V~A !/~
v. A.~ ~s~;s;;;;j

'

