CALS

" Second Diaft
C. T. Clingen

Initial MULTICS

Design Description
and

Performance Specification

3/18/68

TABLE OF CONTENTS

I. INTRODUGTION AND OVERV!EW

A.
B.
C.

Scope of Specification
MULTICS Ob jectives

Initial MULTICS Objective and Overviei
1. Objective

2. Overview

i1, HARDWARE CONFIGURATIONS FOR INITIAL MULTICS

111, PRINCIPAL CONCEPTS

‘A.
B.

The MULTICS Process

Segmentatjon
1. Segments |
2. Segment Attributes
a. Definition -
b. Common Attributes
c. "Private" Attributes
3. kéegment Sharing Among Processers
a. Data Sharing
b. Procedure Sharing

Inter 't Linkape Within a P

‘1, Address Transformation

2. Dynamic Linking

Page -

3-1
31
3-2
3-2
3-2
3-2

3-2

+ 33

3-4

3-4

3-4
3-5

3-5 .

3-6

TABLE OF CONTENTS (continued)

D.

E.
F"

G.

H.

i

Pro Augmentatj

1. Directories and the Directory Hierarchy
a. The directory hierarchy
b. Directory contents

2. Making a Segment Known

3. Attribute Extraction and Enfprcement

L. Segment Creation

Interprocess Communication
Process Creation

1. Creation
2. Process Specialization
r Partitioni
1. Access Domains,"
2. Access Domain Enforaement

3. Supervisor Protection

Processor Management

1. Scheduling

2. Event distribution

Core Managgmghi _
Page and Segment Management

1. Segment addressing

2. Page and Segment states

3. Page and Segment Management by a Process

L. Additional Process States

Secondary Storage Management

1. Device Overflow and Segment Migration

Summary

Page
3-8
3-8
3-8
3-9
3-9
3-10
3-11
3-11 R
3-12

3-12

33

3-13
3-13
3-15
3-16
3-18
3-18
3-19
3-20
3;21
3-22
3-23

3-23
3-24
3-25
3-25

3=-27

TABLE OF CONTENTS (continued)

IV,

V.

THE MULTICS SYSTEM

A.

E.

Process Groups

1. Need for Process Groups

2. The MULTICS Process Group

3. Stopping a Process Group
The Injtialijzed System
1. lnitial'Process Creation Sequence
2. System Control Process Group
a. System Control Process
b. Answering Service Process

3. Universal Device Manager Processes -- the
/0 System '

4. The System Skeleton
The Djalup-login Sequence
1. Sequence of Process Creation after Dialup
2. User Control Process
3. User Précess Groups
a.i Overseer Process '
b. Working Process
The Quijt-Restart Sequence
MULTICS "Daemons"

Summary

USER INTERFACES FOR INITIAL MULTICS

A.

Commands
1. The Shell
2. General User Commands

3. Operator Commands

Page
=1
4=2

4=2
. 42

4=3
b=l
L=l
4=5
4es
45
46

48

4-8
49
49
4-10

4=11

4=11
4=12 -
414
4-15

5-1
5-1
5-2
5-4

TABLE OF CONTENTS (continued) ‘

v.

Vi.

(continued)

B. Languages
C. - Supervisor Entrjes and Utiljty Procedures
1. Segment Management Module Entries
2. Directory Supervisor Entry Points
3. Segment Control Entry Points
4. 1/0 System Entry Points
5. Interprocess CommunicationAEntrx Points -
6. Utility Procedures
| a. Basic Fjle System-associated procedures
b. |/0-associated procedures

c. Miscellaneous procedures

PERFORVANCE

A. Introduction

B. Overa ir

C. Besponse nguirgﬁgnig

Page
5-5

5-6
5-7

5-8
59
5-10
5-10
5-11

5-11

6-1
6-2
6-4,

INTRODUCTION AND OVERVIEW

A.

Scope of Specificatjon ‘

The purpose of this specification ié to describe a subset.of MULTICS -
called Initial MULTICS in terms of functional capability and targeted
performance charaéteristics. Important system concepts and the |

interaction of these concepts are stressed with relatively little

'eFFort.being devoted to design details. The detailed design of

MULTICS is described in the MULTICS System-Programmers' Manual (MSPM).

Particular attention is paid to specifying the differences beiween
MULTICS as specified in the MSPM and Initial MULTICS as targeted for
implementation by mid-1968.

MULTICS Ob jectives _

The objectives of thé MULTICS pro ject have undergone surprisingly.
little modification since being published in the 1965 Proceedings of
the Fall Joint Computer Conference. |

Rephrasing these obje&tives somewhat, they may be summarized as
follows:
- To develop a system which provides an environment for solviné
a wide class of problems, which is reljable, allowing Fof a
type of service similar to that of a utility, and which is
extendable or gvolvable, permitting the rapid inclusion of the
inevitable series of hardware and software additions and |

modifications which become desirable as the system matures.

1=1

B.

(Continued)
- To provide each user with a "virtual computer" of extreme

flexibility and possessing few limitations or restrictions so

»

-

that he may solve his problems, small or large, interactive or
non-interactive in a straightforward manner with no regard for -
the actual hardware involved. Problems’solvable in the‘MULTlQS'
environment represent a broaq spectrum of computer application |
development, ranging all the way from program or application
system writing, compilatioﬁ and debugging to production runs by

the ultimate users.

- To permit controlled interaction among'all users of the system
ranging From‘the broad authority of the MULTICS system-programmer
imposing system modifications upon all othér.users to the "small-
problem solver" running a prepackaged application program or
editing a priyate file; or from the on-line distribution and
sharing of a procedure by a programmer with his collegues to the
cooperative processing, by many concurrent non-prograﬁmer users,

of a large applications system of a shared volatile data base.

The MULTICS design has remained faithful to these goals in spite of
the pressures of unanticipated schedule slippages of disappointing
magnitude. |t is gratifying, however, to note that although the

MULTICS pro ject has suffered drawbacks, it st(ll représents the only

serious effort to implement those unifying concepts which.seem to

point the way for all large centralized computer systems of the future.
In fact, many of these concepts are applfcable to any computing
system of the future. It is of overriding importance to note also

that MULTICS has greater potential for ultimate growth than any other

system under development today

1-2

C. Initial MULTICS Obiective and Overyiew

1. Objective
The ob jective of the Initial MULTICS development effort ig to
provide a basic framework which: |
- demonstrates the technical feasibility and practicality of
the unique combination of basic concepts embodied in the

MULTICS design;

- is extensible in an orderly fashion so that full MULTICS

may be produced from this framework; and which -

- serves as a tool for system programmers engaged in the

continuing development of MULTICS.

2. Overview ‘
In order for this three-part objective to be met, Initial MULTICS

mus t demonstrate basic command, file, |/0 and control capabilities.

Briefly, each remote user must be able to:
- log onto the system, verifying his identity by typing his

password;
- create named files;

- attach file access attributes for each possible user of each-

of his files;

- input information to his files, editing and listing this

information as desired. (In this way EPL and EPLBSA source

files will be created);

2. (Continued)

- compile EPL procedures and assemble EPLBSA procedures;

- execute his own procedures which may in turn call and 1ink

to many other procedures, and;

- log off the system to terminate his console session.

In addition, an Initial MULTICS console user will be able to .
quit his running program, even while output is occurring on his

terminal, and then either restart it or begin a new computation.

Procedures written and executed in the Initial MULTICS envirohmeht

will be able to:

read input from and write output to the user's remote terminal;

- communicate with programs running on the behalf of other remote

terminal users, allowing for the cooperative processing of

shared data bases;

- perform any of the commands (except logging in) that the user

can perform at his console; and

- transfer control to (i.e., call) any procedure in the system to

which the user has proper access privileges.

Therefore, as early as Initial MULTICS, users will have the
ability to create very large programs comprised of-a large number
of procedures and data bases and possessing the oapébilities
provided by EPL and EPLBSA as well as the supervisory capabilities

provided by calls to the system.

1-4

2. (Continued)

The System Operator in charge of the running of an Initial

MULTICS configuration will have the ability to:
- start up the system;
- enable communications lines so users can log inj

- disable lines so when users log out no more can log in.

- dump the contents of the mass storége hierarchy onto tape;.

and

- shut down the system.

There are many functional capabilities which will be provided by
MULTICS but which are not essential to meeting the Initial
MULTICS ob jective. Therefore, for the achievement of lnitial
MULTICS, these features need not be implemented. For example:
= the "hardcore" portion of Initial MULTICS will no{ be capable
of modification or extension without first being shut down.
System compatibility will not be guaranteed from one start
up to the next as extensive supervisor changes are to be

’ expected during Initial MULTICS usage.

- A user's procedure may be denied access to ali peripheral
I/0 devices other than the model 37 teletype. All data
accessing will be handled via the File System using segment

addressing.

- There will be no absentee users.

1-5

2. (Continued)

- There will be no batch processing.

~ There need be no on-line media conversion such as:bulk

tape-to-printer or file system-to-printer information

transfers. :

- There will be no user access to the alarm clock feature of

the system clock.

- There will be no provisions for user "traps" upon access

to File System files.

- The mechanism for assigning a procedure to a particular
ring will not be completely implemented via commands

resulting in the need for p;ogram editing in order to do so.
- There will be no accounting facilities.

- There will be no automatic load-balancing facilities provided
to optimize the use of secondary storage hierarchy déviées;

optimize the number of users at a given time, etc.

- There need be no on-line administrative capabilities. For
example, user identifications and passwords may be pre-

assembled prior to system initializationvand‘loaded when the

system is loaded.

~ There will be no incremental backup; instead file dumping
will occur after all users have been logged out of the

system immediately prior to system shut down. .

1-6

2.' (Continued)

- There will be no capability to save a program —- i.e.,

suspend the execution of a running program indefinitely --

and resume its execution at a later date.

System performance in terms of ability to handle large numbers

of users will not be a principal concern at first. However, the
system is to accommodate a smail number of remote users initially,
that number increasing at a targeted rate as scheduled in the last

part of this specification. '

With the possible exception of the first item, the removal of
all the above restrictions is planned to Eegin upon the accomplish-

ment of the Initial MULTICS ob jectives.

HARDWARE CONFIGURATIONS FOR INITIAL MULTICS

The GE 645 hardware configurations required to support the initialization,

running and dumping of an Initial MULTICS system consist of the following

equipment:

Description Quantii¥1 Quanti’cy2
645 Central Processor Unit 1 2.

645 System Controllers , 2 . 4\) ' - 3
Amount of core per controller (words) 128K - 64K} T 128K
System Clock . 1 2
EMU-302 Drum System (4 x 10® words) 1 1

DS-10 Disc Storage Unit 1 2
Generalized Input/Output Controller 1 2
Magnetic Tape Controller | 1 2

(with 4 Tape Drives) 2

Extended.Character Printer ' 1 2

Card Reader

1) Minimum configuration recommended for specified performance -- see
Part ViI.

2) Minimum configuration recommended for "continuous operation" with
only brief interruptions for reconfiguration in case of trouble or

preventive maintenance. Not required for Initial Multics.

Remote consoles may be limited initially to Model 37 Teletypes, with the
possible additional availability of 1050 terminals. See Part VI for

number of consoles to be accommodated by Initial MULTICS and its immediate

successors.

- 2-1

Ft.

PRINCIPAL CONCEPTS

Incorporated into Multics is a set of key concepts. Although these
features are not necessarily unique to Multics, their integration into

a single system is unique. An understanding of these underlying concepts

is necessary to an appreciation of Multics.

The prinéipals and concepts embodied in Multics can be divided into
two classes: jntrinsic, that is dealing with the facilities provided
somewhat indepehdently of the ha?dwa;e limitations imposed by any
realistic hardware environment; and technological, having to do with
the management of actual hardware and 'software resources in order to

provide the cesired intrinsic features.

Concepts intrinsic to Multics include the following and assume the
existence of a virtual machine of essentially unlimited capacity for

the execution of each program.

A. The Multics Process

Definition: A Multics process is the execution of a time-varying
collection of all the procedures and data bases needed to perform

a task.

On the GE-645, a special gegment called a descriptor segment is
associated with each process. A descriptor segment defines the
span or address space of a process by listing all the procedures
and data currently comprising the'process.‘ The contents of a

descriptor segment may be changed as the process progresées.

3-1

AI

(Continued)

No more than one processor can execute on behalf of a process at

any one time.

Segmentation

1. Segments

Definition: A gegment is a directly addressable collection of
data and/or instructions, which collection preserves its identity
even upon becoming incorporated into a process colleétion. All
procedures and data bases in the Multics environment are céntained

in segments.

This is in contrast to the more common approach of binding
copies of data files and procedure files into a program, whereupon

such copies can no longer be identified nor their attribkes

respected.

2. Segment Attributes
a. Definition: Segment attributes are rules of usage or
quantities associated with a segment which may be enforced
-or observed while a process is Qsing the segment. Although
many kinds of att}ibutes may be associated with a segment,
the most important attributes in a shared environment have
to do with the protection of §egments from unauthorized
- usage. |
b. Common attributes
Some segment attributes are identical for all users of a
segment. In lﬁitial Multics, these include:

- segment size -- a segment may contain as many as 256K words

3-2

Ce.

(Continued)
- segment location, either in core or on secondary storage
- time segment was last accesssd
- time segment was last modified

“Privateﬁ attributes

Other of the attributes associated with a segment -- the

access attributes -- can be different for each user of the

segment. In Initial Multics, permissible access attributes

are:

- read

-~ read and write

- read, write and append

- execute énly

- execute and read

- execute, read and write

- execute, read, write and append
In most cases, the read and write attributes are used for
segments being treated as déta and the exécute'attribute‘

for segments containing procedures.

Multics access attributes not to be implemen{ed in Initial
Multics are:
- write only == write but do not read
- append but no read and/or write -- add to the end of
a segment but no updating or reading of data interior
to the segment text
- trap == transfer to a specified routine, usually to

compute a new access attribute.

3-3

B.

(Continued)

3.

Segment Sharing Among Processers

Because segments do not lose their identity when incorporated

into a process collection, the same segment may be shared by

more than one process at the same time. This has implications

fundamental to the understanding of Multics.

a. Data sharing l |
Since segménts can contain information considered to be
data by the incorporating processes, the same version oF'
a data base can be provided simultaneously to more than
one process, permitting data sharing. This leads to a
notion of cooperatjve processing whereby a community of
processes can extract information from and_mo?ify a single

data base.

b. Procedure sharing
Since segments can also contain procedures, the notion of
more than one process executing in a single copy of a
procedure is ﬁatural. To be successful, however, no one
process must be allowed to change any instructions in the
procedure while it is being shared. This is enforced in
Multics by a convention requiring that all shared procedures
be invariant or pure, i.e., contain no modifiable data or

instructions and no process-dependent addresses.

Pure procedure introduces two more Multics concepts:.

linkage sections and stacks.

Each Multics procedure makes references to other segments

indirectly through a linkage section associated with the

. 3-4 .

C.

b. (Continued)

procedure. A copy of the linkage section is prepared for

each process using the procedure and maintained in a separate
data segment private to each process. All process-dependent
addresses are placed in the linkage section, thereby permittiné
the procedure to remain free of process-dependent addresses.
Also, as a result of procedure invariance or purity, each
Multics process is provided with a call stack which is a

data segment used by all Multics procedures in passing control
from one procedure to the next. Each procedure appends to

the stack a frame of information including volatile register

values at the time of the call, temporary working storage,

14

and argument information for the target procedure. Because
of this method of implementation, all Multics procedures are
recursjve, i.e., they may call themselves directly or

indirectly before returning control to their callers.

’

|ntersegment Linkage Within a Process

Segments referenced by a Multics process collection are referenced
directly, not "read" or "written" as are conventional files. When a
procedure in one segment calls a procedure in another segment, a
direct transfer (plus the required stack frame manipulation) occurs.
When a procedure references data within a data segment, a single
"load" or "store" instruction is executed by the processor. However,
the preparation of machine-interpretable addresses is necessary if
such intersegment references are to occur.
1. Address transformation

Whén a procedure is written and compiled or assembled, machine-

interpretable addresses for called procedures or referenced

3-5

(Continued) '
data in other segments are not yet known. In fact, such
information does not become known until the target segments

are incorporated into the process collection of the referencing
procedure and it is different in general for each process. So
instead of assigning addresses at compile time, intersegment
references are made indirectly through the linkage section

which is prepared to containfault indicators, called linkage

faults, initially and may be thought of as being empty.

In addition, each linkage section contains the symboli; name

or call name used by the programmer to name the target ob ject.
For example, "sin" might be the call name of a sine routine

(and its corresponding procedure segment) referenced from
within a procedure. Thus, the linkage section consgists of a set
of "empty" locations reserved for machine addresses and a
corresponding set of stbolic names by which the programmer

knows the referenced ob jects.

The problem is to insert into the linkage section the addresses

corresponding to their respective symbolic names.

Dynamic Linking

In Multics, address insertion occurs dynamically and only upon
initial reference to the target object. In this way the work
associated with linking is performed only for those items

actually referenced in a particular process, other references

remaining unlinked.

To accomplish dynamic linking, each Multics process is provided

with a private data base called the Segment Name Table (SNT)

3-6

(Continued)

and a set of procedures, one of which is thke Linker.

The SNT contains entries each of which is a symbol pair
consisting of a segment call name and its corresponding machine-

interpretable address, which on the GE-645 is a segment number.

Further refinements to the linkage section permit the translation
of names of items within a segment to machine addresses.

(Since the segment number for a.given segment in general differs

in different processes, linkage sections containing references

to a given segment will differ by process and hence cannot be

shared.)

Upon initially attempting an intersegment reference, the‘processor
. encounters the linkage fault in the link;ge section and is trapped
to the Linker. The Linker and its associated procedures, running
as a part of the process, check the linkage section in which the
fault occurred and finds the call name éorresponding to the fault,
search the SNT for that name discovering the corresponding

segment number, and (simplifying somewhat) replace the fault

- indicator with the machine-interpretable segment number. Then

processing resumes at the point of the fault.

The link is thus completed and subsequent references occur

without the occurrence of a linkage fault.

For the sake of accuracy it is to be noted that the above
simplified description of intersegment linkage and dynamic
linking has ommitted a discussion of the Initial MULTICS

capability link to symbolically named procedure entry points or

3=7

2. (Continued)
data items within the target segment, representing a further

refinement of the ideas presented here.

Process Augmentation

Thus far it has been assumed that all segments required by a process
are somehow made available to the process when it begins. This is
not the case; a Multics process has the capability of augmenting

(or reducing) the number of segments comprising its own process
collectidn while the process runs. That is, segments contained in

the system may be known or unknown to a particular process and may

change from one state to the other. A known segment has been assi gned
a segment number within that particular process; an unknown segment

has not.

~ Thus the notion of a dynamic process address space presents itself.

1. Directories and the Directory.Hierarchy

Since segmenté need not be known to any process at all times,

a convenient structure for locating them and recording information

about them must be provided. The Multics directory and directory

hierarchy has been provided for this purpose.

a. The directory hierarchy
The hierarchy can be thought of as a tree structure, each
non-terminal node of which is a directory: The brancﬁes
leaving a node can lead to infeiior directories or, in the
case of terminal nodes, to data or procedure segments. The
tree-like structure makes it easy to uniquely name and locate

'large numbers of seéments and to group them into librarijes

of various kinds.

3-8

1. (Continued)
b. Directory contents
Directories are segments. Their purpose is to contéin ail
the segment attributes for each directly inferior segment,

be it a directory or a non-directory segment.

Each directory has one or more owners. An owner can modify
the contents of the directory thereby altering the attributes

of the directly inferior segments described in the directory.

In addition to the common attributes, such as length,.
described in a directory, there is associated with each
inferior segment a list of entries -- one for each user who
may access the segment. Each entry ddscribes the exacf

access priviieges to be permitted the corresponding user.

2. Making a Segment Known o .
A major Multics objective is that of allowing a pEOCedure to
'suécessfully reference a segment Which is unknown to the procedure's
process at the time of the reference. This impiies that the .
segment must be made known dynamically so that dynamic linking

can then take place.

Normally a segment is made known as an iédirect result o% a

linkage fault. When a linkage fault occurs for an unknown segment, .
the dynamic linking mechanism discovers no segment number for {he
call name responéible for the linkage fault. As a result, a set

of supervisory modules are invoked (as a part of the process) B

to search the directory hierarchy for the segment with the desired

call name.

(Continued)

The search is directed using a set of search rules (which in

Initial Multics will be the same for each process and will in
general refer to standard libraries of segments) by a set of
modules, the most important of which are the Segment Management
Module, Directory Control and Segment Control. These modules
Jointly cooperate to make known to the process dHring the course

of the search those directories specified in the search rules.

Attribute Extraction and Enforcemesnt

Once the desired segment has been located, another supervisory
module, Access Control, checks to insure that the desired |
segment is accessible by thé owner of the process requesting it.
If s0, that segment.attribute information which is applicable to
the requesting user is extracted from the directory and pléced

in data bases private to the process for rapid access.

A segment number is next assigned to the segment, which then

becomes known, and access attributes extracted from the per-process
data bases are prepared for the appropria{e word in the.Descriptor
Segment so that each attempted access of the segment by the processor
running on behalf of this process will be monitored, insuring

that only that type of access specified by the segment owner is

permitted. In this way attribute enforcement is hardware assisted

and consequently relatively efficient.

Finally, the Segment Name Table is updated and.dynamic linking

can begin.

N

3-10

Do

(Continued)

4. Segment Creation
There is another extremely important aspect of process augmentation --
namely that of segment creation. Each process has the ability to
create a segmen{ of required size (from O to 256K words) and to
give that segment all the desired segment attributes by naming it

and describing it in an appropriate directory.

Thus it is possible for a single procedure contained in a process to
initiate a chain of calls to initiélly unknown procedure segments
resulting in the ultimate inclusion‘intO'the process of all the
procedures and data bases required for the task implied by the first

procedure.

Interprocess Communication

Definition: Interprocess communication is the act of one process
informing one or more other processes of the occurrence of some
awaited event. This is the method used to synchronjze cooperating

processes so that orderly sharing of data and sequencing of computations -

can occur.

-

The single requisitg for interprocess communication is the ability
for more than one process to share a single mutually known data

segment. However, conventions must be established among all communicating

processes if the business of informing is to go smoothly.

Multics formalizes a set of interprocess communication conventions
by providing each process with a set of supervisory modules to create
system-standard shared communication areas called gvent channels.

In addition, a 'set of supervisory procedures are provided to .each

3-11

(Continued)

process permitting signals to be "sent" over these channels by

setting events and giving "receiving" processes‘the ability to easily.'
determine the existence of and nature of such signals once they have‘
been sent by testing events. Conceptuaily, the recefving process caﬁ‘
be thought of as being in a loop waiting for the occurrence of an

event until it occurs before continuing its task. Supervisory

procedures performing the functions of pnotify and wait are provided to
manage the use of event éhannels. Wajt causes the receiving process
to wait for the occurrence of an event subsequently signalled by

notify in the informing process.

An additional facility making use of the Interprocess Communication:

module is the Locker, designed to aid processes in the locking and

unlocking of shared data bases so that orderly deatingiof the data

is possible.

Process Creation

In the Multics environment, processes are made and destroyed as the

need arises. For example, when a user is granted access to the system

‘he is supplied with several processes to perform his tasks. This is

done by allowing a process to create and‘destroy one or more additional

processes.

In Initial Multies, only certain privileged processes are granted
the right to create a process -- the user will .not have this
capability under his control.
1. Creation

Conceptually, process creation is rather simple. First, it

consists of ‘creating several segments on behalf of the new pro¢eés.

3-12

1. (Continued)
Among ‘these segments are the Segment Name Table aﬁd other per-
process supervisory data segments so that the.collection can
survive on its own in the Multics environment. Secondly, it
requires the recording of certain information in system-wide

data bases so that the existence of the new process is properly

acknowledged.

2. Process Specialization
It is necessary to provide a means by which a newly created
process can be specialized -- not all MULTICS processes are

identical. This is accomplished in two ways.

First, when each process is created it is assignedlto a "user';
either a person loéged into the system or to the system itself
as a special process. Since different users have different
segment access privileges, the future makeup of processes owned

by different users is effectively controlled by the privileges of

its owners.

Second, the process creator passes to each created process, by
means of a segment called the Rrocess Initialization Table, a |
procedure name to be called by the created process. When the
created proéess begins to run, it first calls this procedure which

in turn by a chain of calls, linkage faults, and making segments

known can cause the new process to take on the desired structure.
1]

G. Process Partitioning

1. Access Domains

All data and procedures referenced by a Multics process become

known to the process; as such they could be indiscriminately

3-13

(Continued)
referenced by each procedure in the process unless somehow

restricted in availability.

Perhaps the most compelling reason .for restficting access to
segments known to a process is the need to permit some procedures
to read and write information in a known data segment while at
the same time denying uncontrolled access to the data by other
procedures (in the same 'process) which might violate either the
conventions assumed by the data therein or the intended use of
the data. Similarly, indiscriminate access to procedures operating

hardware on behalf of the process can lead to chaos.

Therefore, the notion of access domains ordered Ey degree of
privilege are an essential feature of Multics. Because of the
ordering, access domains are envisioned as 64 concentric annuli,
called rings, numbered from the center outward as O to 63 with the
most privileged "ring" being the "bullseye" or ring zero. The

interfaces separating rings are called walls.

Since a process collection consists of segments, process
partitioning into rings implies that each segment possesses an
access domain attribute or ring ngmber describing the privileges
to be granted to it. This is so in Multics, with an additional

segment attribute called the access bracket being associated with

each segment. The access bracket, which describes the rings from
which a segment may be accessed, is stored in the directory
describing each segment and, as is the case for the other access

attributes, may differ for each‘user_permitted to attach the

segment to his process.

3-14

G. (Continued)
2. Access Domain Enforcement
The general strategy to be enforced is as follows:
- No procedure is allowed to accesé data residing in a
more privileged (inward) ring.
- Procedure calls to other rings must be intercepted.
The implementation of ring-structured processes is complex.

However, a gross understanding can be achieved from the following

greatly over-simplified overview:

For each ring within which a process runs, imagine for the
process a collection of segments for ring n (n = 6,1,...,63)
consisting of': | |
- A descriptor segment describing all segments known to the
‘process but permitting access only to those residing in
ring n. This is a "fragment" of "the" descriptor segment.
- A stack to be used for interprocedure calls in ring n.
This is a "fragment" of the call stack. |
- A linkage segment containing only those linkage sectioné

for ring n data and procedure segments.

Each descriptor segment is initialized such that an outward
data reference to a less privileged segment is permitted

provided the other access attributes allow the atlempted reference

but such that an inward data reference to a more privileged segment

is prohibited.

In addition, each descriptor segment is initialized so that

outward calls from one procedure to a less privileged procedure

which may be accessed or inward calls from less privileged'tq

3-15

(Continued)
more privileged procedures which may be accessed from outer rings .

cause a wall-crossing fault. I|llegal inward call attempts are

prohibited upon initial reference by placing an "illegal access"
fault in the appropriate ring n descriptor segment en{ry when
it is prepared as a result of checking the access bracket for the

target procedure.

When a wall-crossing fault occhs, the process traps to a set
of .supervisory procedures whiéh:

- On inward calls, check the validity of using & particular
segment "entry point" ‘to insure that the location being
referenced corresponds t§ a valid procedure entry.

- On inward calls, copy argument pointers intz??nner ring and
check the validity of arguments being passed.

- On inward returns, check the validity of using a particular
segment "return point" to insure that the location beihg.
referenced corresponds to a valid procedure return. |

- Switch the pfocess to the target ring so that it uses the

appropriate descriptor segment, stack and linkage information.

Initial Multics will not allow arguments on outward calls.

Supervisor Protection

In Initial Multics, the main applic%tion of procéss partitioning
will be that of supervisor protectién. That is, each process Will
be partitioned such that the sensitive procedures and data bases
essential to the proper running of a process will reside in

highly privileged riﬁgs so that only a few entry points are
accessible to less privileged user-provided procedures known to the
process. |

3-16

G. 3. (Continued)
In Initial Multics most supervisory procedures and data will
reside in ring 0 and ring 1 with user segments restricted to

ring 32.

So far, the concepts introduced describe those aspects of a Multics

process which are ;ndependent of hardware céntrajnts such as the‘number of
available central processors ar the aﬁount of core storage. They represent
those facets of a Multics process which are to be presénted to the user

of a process. In reality, technological constraints are such that it is
impossible to have a dedicated processor running for each process and

enough core memory to contain all the segments in the directory hierarchy.

As a result, a set of concepts have been integrated into each Multics
process giving each process the capability of "simulating" the ideal

environment by sharing the actual hardware with all other processes.

Each process manages its own facilities in a manner compatible with all
other processes by accessing shared system-wide data bases describing

the exact state of each facility. In this context, the term facility
refers not only to hardware resources, but also other "objects" which
must be managed by a process such as segménts and pages. This repreéents

an excellent example of the cooperative processing made possible in"Multics

by segment sharing.

The following concepts ¢an thus be thought of as a means by which each .
process implements a virtual machine with a dedicated pseudoprocessor for
each process and essentiallyunlimited virtual memory directly accessible
by the pseudoprocessor. It is on this virtual machine that the above
intrinsic capabilities of intersegment linking, p?ocess augmentation,

interprocess communication, process creation and process partitioning

have been implemented.

3-17

Processor Management

The fundamental problem of processor management is that of providing

each process with its own pseudoprocessor, each slower on the average

than the real processor, given a small number of real processors.

The Multics solution is to time share or multiplex all available

processors among the eligible processes as follows.

1.

Scheduling

Each process is provided with a supervisory module, called a
scheduler, with wHich to schedule itself for future use of a
processor. Also, each process shares a supervisory mcdule called

the Process Exchange which allows the process, when eligible, to

receive a processor from.a retiring process or, when a process's

time guantum has expired, to pass the processor to the next

elisible process. These functions are performed with the aid of

a shared, system-wide data base containing the ready list, a list

of processes each awaiting the services of a processor for some

limited time quantum.

When a process has been using a processor for a'dﬁration equal

its time guantum, it is interrupted by a hardware timer. This
causes the process to trap to its scheduler. The scheduler makes
an entry for the process at some appropriate location in the
ready iist according to the rules defined by the scheduling
algorithm; Initial Multics will use a "round robin" rule at first.
Then the Process Exchange module will select the process at the

lop of the ready list and yield the processor to that process.

In addition, a third state exists -- the blocked state. When

a process is blocked it is unable to proceed in its computation

3-18

H.

1. (Continued)

until the occurrence of some event. A blocked process does not

appear in the ready list.

Event distribution

Since it is not economical for a process to loop, waiting for the
accurrence of an event for long periods of time, the waiting
process blocks itself. Therefore, a means must be devised for a.
sending process to remove the intended receiver of an event from -
the blocked state and return it to the ready list. This is
accomplished by allowing the Interprocess Communication functions
"wait" and "notify" to interact with the Process Exchange directly;
when a process wishes to wait, instead of testing the awaited
event variable change by looping, it blocks itself by removing
itself from the ready list of processes eligible to share a
pfocessor. When the event variable is changed by the sending

process it then, by programming convention, must notify the

~ receving process by calling the Process Exchange and restoring

the blocked process to the ready list, making it again eligible

for processor time

Thus, Interprocess Communication and the Process Exchange combine .
to provide a means for distributing event signals to processes
which have relinquished a processor indefinitely so as to improve

processor multiplexing efficiency.

It should be noted that the processing of hardware interrupts
such as |/0 interrupts -- which in general interrupt a process
other than the interested process -- are treated as events and

processed accordingly.

3219

. Core Management

Although more than one process can have portions of its segments in
core at any one time, there may not be enough core for even one entire
process. In general, the size of the address space for any oné process
may exceed the size of core memory available og any technically
feasible hardware system. Since segment addressing requires tgat the
portion of a segment being accessed reside in core memory before the
processor can access it directly, it is clear that ‘there exists a
problem of managing the available core and distributing it to processes

¢

as required so that the required information can be placed in core.

Each Multics process does its own core space -allocation. This is
accomplished by a set of supervisory procedures comprising Core Qggiggl'
known to each process and a shared system-wide data base called the

core map.

Core is allocated in fragments called g;éggg. Gréups are comprised of
integral numbers of physically contiguous 64 word blocks of core and may
be of various sizes. The core map describeé th;‘exact status of each
group of core in the entire $ystem and, greatly oversimplifying,

each group of core is either available for use -- free -- or it contains

information for some process =-- used.

When a process needs core, Core Control acting on behalf of the process,
locates the appropriate group of free core and reserves it for this

process by marking it "used". That group of core may then be filled

with information for the process.

When the number of free groups falls below a threshold value, free

core must be replenished. The only way this canbe done is to move
3-20

(Continued)

information in used groups to secondary storage and then marking these
groups free again. In the case'oF information which ha; not been

altered, such as pure procedures or read-only data, a valid copy of

the information already exists on seconaary storage so it need not be
written out before the group is freed. |In either case, the previous
contents of the group are overwritten or zeroed when the group is assigned
to contain new information so that the previous contents will not be

unintentionally revealed to subsequent users of the group.

Selection of which groﬁps to free is determined by a replacement
algorithm which maintains a record of the recency of use of all used
groupé by utilizing a GE 645 hardware feature which indicates whether
or not a group has been referenced. The strategy then uéed is, using.
this recency information, to free those used groups which have been

referenced least recently.

Page and Segment Manag ement

On the GE 645, all segments are subdivided into units of equal size

called pages. The page is an allocation unit of logically contiguous

- information as opposed to the group, which is an allecation unit of

core gpace used to contain a page (or hyperpage). On the GE 645

a page can have a length of either 64 words or 1024 words. In Multié;,
each segment is aivided into hyperpages of equal size, wEere a hyperpage
is a set of adjacent pages considered to be a single unit. For
simplicity, however, it is adequafe to discuss the management ‘of pages

by a Multics process, hyperpage management being a generalization

of this.

3=21

J.

(Continued)

1.

page table for the segment.

" Segment addressing.

A quick sketch of segment addressing on the GE 645 is an appro-
priate introduction to page and segment management in a Multics

process.

Segment referencing is done via a segment address pair; the

first element of the pair is a gegment number, the second an

offset. The segment number is the machine interpretable address
for a segment known to a particular process and is taken by the.
processor to be an index to a segment descriptor word in the
descriptor segment of that process. Different pfocesses may
assign different segment numbers to the same shared segment.

The segment descriptor word, besides containing access information

for the corresponding segment also contains the address of the

1]

Multics segments may be fragmented in the sense that pages

comprising a segment need not be in adJacént groups of core and

not all pagesbneed be in core. A segment page table is simply a
table of machine addresses, the first address being that of the
first page, the second that of the second page, etc. The offset,
which is the second part of é segment address pair, is the location
of the desired word relative to the beginning of the segment and

is used by the processor in determining in which page to find

the desired word. |f a segment is shared by more than one process,

the page table is also shared.

Thus the processor locates the referenced word by usfng the segment
number to locate the segment's page table and the offset to select
the proper page.

3-22

J. (Continued)

9

£r0

Page and Segment states

In Multics, a page is either in core or missing. lf missiqg,

a missing page fault is placed in the corresponding page table
word. |f not missing, the corresponding page table word contains

the address of its page.

A segment is either loaded or’unloaded. |f loaded, there exists

a page table for the segment and the segment descriptor words in
each process to which the ségment is known contain the address of
the page table. |f unloaded, there is no page table for the
segment -- typically it has been destroyed to make room for more
actively referenced information -- and a missing segment fault

is placed in each segment descriptor word referencing the segment.

Page and Segment Management by a Process
Each Multics p}ocess contains a set of supervisory procedures

called Page Control and Segment Control by which it manages its

own page and segment requirements. Since segments and their
associated pages can be shared by several processes, a shared

system-wide data base called the Active Segment Table is maintained

by Page Control and Segment Control to permit page and segment

management.

,

The Active Segment Table contains an ent?y for each ségment
being accessed by one or more processes in the system. Each entry

contains information in the form of a file map describing the

location of each page on secondary storage for the associated
segment. Also, each entry contains a list of all the processes
using the segment and the segment number by which the segment is

known to each process.

3-23

(Continued)

When a process references a page which is in core, {hé reference
occurs immediately. |f the page containing the desired word is

not in core, however, the processor encounters a missing page fault
and traps to Page Control in the address space of the running procéss.
In an unused portion of the page table word containing the fault,
Rge Control finds an index which locates the proper segment entry

in the Active Segment Table. After acquiring from Core Control a

- group of the proper size £o contain the page, Page Control then uses
the file map indicated by the System Segment Table index to locate
and bring into core the desired page. The page table word is then
updated to contain the address of the newly fetched page and

processing continues from-the point of the fault.

If a process references a segment for which no page table yet exists
in core, a missing segment fault is taken, when the processor

references the associated segmént descriptor word, invoking Segment
Control. The action taken is similar to that taken by Page Control

except in this case the addjtional effort of constructing a page

table must be undertaken.

Note that when Core Control frees core groups, it first calls Page
Control and Segment Control to remove pages from those groups.
and, if the last page of a segment has been removed, to discard‘
page tables, filling the apprbpriéte page table words and segment

descriptor words with the appropriate faults and Active Segment

Table indices.

Additional Process States

In order for a process to run, certain pér—proceés segments must

be loaded. When these segments are loaded, the process is éaid to
| 3-24, |

(Continued)

be loaded. In Initial Multics, when a process is creatgd, iﬁ
will be loaded and may remain loaded until destroyed. This
implies that there may exist a relatively small upper limit to
the number of processes which can exist under Initial Multics
at any givenvinstant as determined by the amount of core memory
available to the system. When a mechanism is provided to unload"
dormant processes, reloading them when their services are again
requested the core storage restriction on the number of processes

which can exist in the system at a given time is removed.

The decision to include process uhloading'and reloading in
fnitial Multics or to delay it for a subsequent version hag not
yet been made as-it depends upon performance issues not ye{

resolved.

Secondary Storage Management

Since all required segments can not fit into core, a hierarchy of

on-line secondary storage devices is available to the system. Each

Multics process cooperates in managing the space on these devices

and in moving information among them. For Initial Multics, the

secondary storage hierarchy will be limited at first to one drum and

one disc.

1.

Device Overflow and Segment Migrati on

As segments and processes are created during the normal course
of operation of Multics and as more and more information is
entered into the system, the need for space to store segments
grows. As a secondary storage device fills up, it becomes

necessary to remove segments from it and move them to another device.

3-25

(Continued)

Eventually, Multics will have an open-ended storage hierarchy
with removeable magnetic media permitting an unlimited amount of
overflow to off—line storage. In Initial Multics, however, the
amount of storage will have a fixed upper limit. Also, Multics
will eventually have a storage balancing capability which will
adjust the resident location of a segment according to the uszge
characteristics required of the segment and the retrieval
characteristics of the available secondary storage devices in
the hierarchy. In Initial Multics, this balancing capability is

not fully implemented.

Initial Multics will, however, have the ability to cause a .
segment to migrate from one device to another as follows. When

a process takes a missing segment fault while referencing a
segment, and further discovers that no Active System Table entry
exists for the segment, it checks to see:if the device upon which
the segment resides is overloaded or if the segment should be
moved to a device whose access characteristics better match the
access requirements of the segment. |If éo, it locates a device
which is not overloaded and prepares to allocate space on the new

device to accommodate this segment. This space is called a move

file. Then an Active Segment Table entry for }his segmént is
created to contain not only the file map but also a move file map.
Processing.theq continues as usual, with the exception that when-
ever a page for the migrating segment is removed from core it goes
to the new device as indicated by the move file map. When migration

has'completed, the old file map is discarded and the move file map

becomes the new file map.

3-26

I1l. (Continued)

L. Summary
This section has described the following concepts key to determining
the nature of a generic Multics process.
- segmentation
- intersegment linking
~ process augmentatibn
- interprocess communication
- process creation
- process partitioning
- processor management
- core management
- page and segment management

- secondary storage management

All of these concepts are superVisoEy in nature and fall into two
classess -- intrinsic, dealing with those features to be provided to
the user independent of the machine used; technological, dealing with
the simulation of a virtual machine upon which to implement the

intrinsic concepts.

It is important to understand that these capabilities are included in
each process running in the Multics environment. This sharing of
supervisory responsibility and the segments implementing these
functions by all processe§ has led to the use of the term distributed
supervisor to contrast the Multics implementation of supervisory tasks
with the usual method in which the supervisor is treated as separate

from user programs.

3-27

L. (Continued)
Given the above capabjlities of a single generic process, it is
now possible to describe the way in which processes are specialized
and interact to form a coherent system of mutually cooperating

processes.

THE MULTICS SYSTEM

The generic Multics process, described in terms of its significant
concepts in Part |11, can be considered to be the basic building block

of the Multics system. Although the attributes of a process detérmine in
large measure the capabilities provided to each Multics user, the actual
assignment of one or more processes to a user requires the intervention

of a set of specialized system processes. These special-purpose p}oceSSes

together with the user processes.belonging to Multics users, jointly

comprise the Multics System.

In some cases, special-purpose processes are nothing more than generic
procesées performing relatively restricted control functions which are
nevertheless best implemented as separate processes; the control processes
and overseer processes described below are cases in point. ‘Another class

of specialized processes deals directly with the exclusive management of
system resources, and as such represents a partial retraction of the concept

of the distributed supervisor; the Universal Device Manager Process Group

members are examples of such processes.

[t is useful to regard tﬁe Multics System as the first applications system

to be implemented in the Multics environment, although its implementors

are Multics system-programmers with more privileges thaﬁ the usual system
programmer will have. Thus, most subsequent system applications will be
superimposed upon the Multics System structure. The design is sufficiently
modular, however, that it can be significantly modified for special
applications or even allow the concurrent residence of more.%han one Multics-
like System on the same hardware, should the need arise, by combining the
building blocks in different ways.

4=

V.

(Continued)

A.

Process Groups

10

Need for Process Groups

A Multics process cannot run on more than one processor at a time;

" therefore, it is not possible to implement asynchronous tasking

logic using a single process.

The ability to implement asynchronous tasking logic is important
for two reasons. First, it allows for the possibility of
simultaneous precessing of two or more sub-tasks compriéing a
larger task or job. Secondly, and more importantly in an
environment with only a few real (as opposed to virtual) processors,
it permits a more natural description of sets of non-sequential but
interrelated tasks than is possible within the constraints of the
sequential logic of a single process. For examble, the implementa-
tion of the control logic embodied in the Multics System is best

done as a set of asynchronous but mutually cdependent tasks.

The Multics Process Group

Asynchronous tasking is provided in Multics by the brocess'ggggg.
A process group is‘a set of processes which cooperate towards |
the accomplishment of some task. Each process group has a unique
identification and each member process shares certain information
and segments with all other p;ocesses in the group. There is a
system-wide data base called the Process Group Directory Directory
(see Section A.4 below) contéining an entry for each process gfoup
in the system. Individual process groups each possess a Process
Group Directory describing the group and certain segments shared

by all processes in the group.

4=2

(Continued)

The wait and notify functions of Interprocess Communication are
the means by which processes coordinate their processing with
other processes in their group, much analogous to the call and

return by which procedures within a single process communicate.

In Multics, access to segments, resource allocation and, in general,

1/0 are on a per process group basis.

Stopping a Process Grou#

Any well-designed system must make provisions for the fickleness
of its users -- in the case of humans, they make mistakes and they
change their minds. Therefore, lhe ability to stop the runniné of

a process group has been included in the Multics.System.

A special process interrupt, asalogous to a hardware interrupt,

has been implemented in Multics. It is called the guit interrupt

and is a means by which one process can stop another process by
causing.it to be interrupted in the midst of whatever instruction

sequence it is executing.

It is not sufficient to stop just a single process, however, as it
may be a member of a process group. For this reason, each.prdcess
group which is stoppable is provided with a special-purpose process
called an overseer process. The remaining processes.in the group
are called working processes. A system convention has been
established whereby, whenever a process grbup is to be stopped, its
overseer is signalled, whereupon the overseer sends quit interrupts

to each of its working procesms stopping them all in an orderly

fashion.

IV. (Continued)

B.

The Initialized System

The structure of the Multics System is best understood by observing
its behavior as a function of time. Once the sequence of process
creation has been outlined, the individual processes and process

groups will be described in more detail.

1. Initial Process Creation Sequence
The problem is, given a "cold" machine, to bring it to a level

of which it can accept input from external users.

This is accomplished by loading a small bootload program into
the machine, which program in turn begins to input system tapes

containing Multics modules. The first of these modules are a

set of initialization procedures which construct an environment
in which a Multics process, with all its "intrinsic" and "technological
functions, can run -- for example, a stack segment is provided so

that interprocedure calls can occur. Once this environment is

initialized, the initialization program creates a System Control

Process Group initially containing one process, the System Control

Process, and "retires" by calling wait, waiting for the system to

shut down.

The System Control Process then creates (see Figure 1) a
Universal Device Manager Process Group containing, for Initial

Multics, only a single process, the Typewriter Manager Process.

Next, the System Control Process creates another process in the
System Control Process Group -- the Answering Service -- and
retires, waiting for system shutdown or system operator messages

specifying hardware or software configurations.

L=

initialization

— - e e e - -

'poat

initialization

Y
operator

 dial in

user #1

login finished

— e - o - - -

login finished

Figure 1

time

\I

time

—

A4

INITIAL MULTICS SYSTEM DEFINITION ——

PROCESS CREATION SEQUENCE

System
Control
Process

\ﬁ\}

i

!

SYSTEM CONTROL

Teletype
Manager
Process

Answering
Service
Process

PROCESS GROUP

l

UNIVERSAL
DEVICE MANAGER

PROCESS GROUP

lape
Manager
Process

User
Control
Process
(f‘or ______ N
User
Control
Process

™

User
Control

Overseer A Process
Process \\\\\\\;
f
Working \\\\\\\\
Process
Overseer
SYSTEM OPERATOR Process Overseer
USER PROCESS Process =
GROLR
Working)
Process Working
USER #1 - Process
"USER PROCESS USER #2
GROUP USER PROCESS

GROUP

————

SN

User

Process

Control‘

N

S

Overseer

Process

N

\

Working
Process

USER #n

USER PROCESS

GROUP

B.

1.

(Continued)

Eventually a Load Control Process to optimize the potential number

of users on the system at any one time will be created by the
System Control Process as a part of its group; however, this will

not be implemented in Initial Multics.

System Control Process Group
Initially, only two processes exist in the System Control Process

Group: System Control and Answering Service.

a. System Control Process

The System Control Process serves two functions. First, it
creates those processes necessafy to permit the System Operator
to login -- the Answering Service and the Teletype Manéger

~ Process. Seéondly, it serves as a kind of "manager" for system
‘operator requests regarding desireé optional system configurations.
In Initial Multics, however, these requests will be limited to
a minimal set of capabilities, basically allowing the System
Operator to enable and disable telephone lines and to create a
Dump Process and Tape Manager process when a- File System‘dump

is required.

b. Answering Service Process

The Answering Service Process manages all eligible, but as yet

 unused communication lines. Immediately subsequent to
initialization, the Answering Service Process will respond to
a dial-up signal upon only one line -- the System Operator's
line. After the System Operator authorizes general remote

, usage‘of the system, the Answering Service then "arms" a set
of lines as specified by the System Operator, permitting

incoming calls to be serviced.

4=5

B'

2.

3.

b. (Continued)
The Answering Service has responsibility for initiating the
the chain of process creation which results from each dial-up
to the system. As soon as the appropriate processes exist,
the Answering Service relinquishes logical‘control of the
communication line, regaining it again only whe% the user
hangs up. Thus, the Answering Service can be regarded as a
"switchboard", connecting line; {o user procésses as users log

into the system.

Universal Device Manager Processes -- the |/0 System
The Multics 1/0 System employs a special convention for managing

peripheral devices other than on-line storage devices; this is to

devote a specialized process -- called a Device Manager Process —-
to the servicing of all members of a particular class of peripheral
device. All other processes desiring the services of a:peripheral
must make requests of the appropriate Device Manager Process by

means of Interproces Communication conventions.

A process invokes the services of the Multics 1/0 System just as i{
invokes any -other supervisory functions -;'by calls to ring O or

ring 1 supervisory entry points providea for user access. The

actual mechanics of processing |/0 requests differ radically from
those of most other supervisory requests, however. Most supervisory
requests are satisfied by ring 0 and ring 1 segments "known" to the
requesting process. In the case of 1/0, this is not the case. After
some of the 1/0 processing is done in the initiating process, it
places.the necessary information, e.g., a line of output text,in

a segment shared with a Device Manager Process and then notifies

46

B.

3.

(Continued)

the Device Manager Process that a task is ready for it. Since
there is oniy one Device Manag er Process for.each class of
peripheral device, many processes may use the same Devicg Manager

Process. The initiating process may then wait or continue its

working depending upon the amount of synchronization desired

between the logical 1/0 and physical |/0.

When a hardware interrupt signalling the completion of an |/0
éction occurs, the interrupted process restores the appropriate
Device Manager Process,.if it is blocked, to the ready list;

as 'soon as a processor bécomeé availéble to the Device Manager |
Process, it processes the interrupt and, if appropriate, notifies

the process on behalf of which the 1/0 is being performed.

This splitting of 1/0 functions across two processes has two
principal advantages. First, it provides for the'possibility

of asynchronous |/0, with the Device Ménager Process accepting |/0
requests from another process which continues on without waiting
for the physical 1/0 to begin. Secondly, it permits an orderly
processing of special interrupts, the console quit interrupt

being an important example. (See D below)

In Initial Multics, because of the limited peripheral complement
to be first included, the Universal Device Manager Process Group

may contain only two processes -- the Teletype Manager Process for

Model 37 Teletypes and the Tape Manager Process used in obtaining

File System dumps.

,,,,, e i PNCS S il LA L i r . = -
!
Root
Direc-
tor
'!Mult ics Ro El System_Root
Pro sl "Pro':t ':”vLo’n' 5 tIL" 5 ! - L | 1 ' a . | |
rocess Je gi ystem Log | . I{j T Ty v - - =
Directory ’ Directory Directory Directory - f[ﬁer + §ys:tem !mt . SBas:_c Ff)l I[O System ‘Hardcore Backup Traffic |Bystem Coi
Directory Directory . éD}rec o ialization YSte‘:: irecs Directory 1/0 Dir- Directory Controlleftrol, Usel
! irectoly . er.ec"tory tory "BFS " /on ectory . Dir. "TC"|Pontrol D
i i Ipitializer ; i .
| l |- : o by nog for - lfor sad ' ‘ l Harbcore 1/0 Backup Sys- Traffic Con. §
use by sys, proc, | e, ardcore up Sys- raffic Con- Syste
Process j| Process Pro ject Pro ject E?;:onnel' r:tagoeg? r *_ user System Initiali- File System Non-hardcore Segments tem Segments . troller Seg- CZnh
Directony Directory |- Pirectoryy Directony . Lble User Uder 'zgtxon Segments Segments. é/o Sy:*em . o ments User
—errors | Directory [°°I Directory . egments . - Contr
L ! | . O - Personnel names with : : Segment
.+.per-process super- fgg EF- their oY)
visory: data segments l-r .passwords ‘ l
: User .4 User .pro jects S p—
{ : Profile Profile. . The Users! file R K N Syst
System Diredtories, Library Bystem_librarly. |System_ lyb om_.
procedures gnd data. 1 library_2 ibrary_5
User Profile..User Profile Information for . —— : '
. . H 1 .
information each project user--e.g. user's library proced- 'subseJ of subsel of
working directory . c
) . users for gener- system system subset of system
. . . al user refer~ procedures procedures procedures
l I l o ' ence. .)
Process Grou Registr ’ {System Pro- |
gérectory' : Fi%e Y cesses' Stor
irector : i ot . .
- y 1 : Directory age Areg.Dir ory - Legerid:
i ; . .
for' ea. proc. . : ' .
e 8 } - Direc}ory= :
Process Bp| [p . cess Gp||.Device Type| [Answering | System) R
Directory t-ip; ectory || Directory Service Control [
: Directory | Directory |
p‘eerrécess N I ‘ l
data tteer . -] .)) ‘9
%:::g : ‘ . Information T?lephona System Operator. . Figure 2. System Skeleton For Initial Multi Directories Onl B
© i | about each 1line Process Commanderelated o
; ' =1 .device Informa-| PIT Direc. . . . : l *
g " tion 1nforn§txon *
ProcLss Initialization 0
Table templates for System
Processes
|

B.

(Continued)

be

The System Skeleton
Upon completion of initialization, a system-wide set of directories

called the System Skeleton has been established. The System

Skeleton for Initial Multics is shown in Figure 2.

Rectangles in Figure 2 represent directories. N&te that Figure 2
gives an overview of the entire Directory Hierarchy within the
Multics File System; all procedures and data segments —- both user-
oriented and system-supplied -- fit within this structure.
Procedure and data segments inferior to teminal directories-are

not documented here.

In Initial Multics, all segments will be inferior to the System_
Root as shown in Figure 2. System-Library_1 through System-Library_5
serve as repositories for the numerous system segments loaded from

tape as the system is initialized.

In subsequent versions of Multics, segments inferior to the

System_Root will be those segments involved in the initialization
of the System. Segments inferior to the Multics_Root for the

most part will serve as special data bases for the Multics System
processes described above. However, the User Directory Djrectory
and the inferior User Directories -- one for each user -- will be
an importaﬁt exception, these directories being used as root

directories for all user-supplied segments.

The Dialup-Login_Seguence

Perhaps the single most imporfant function of the Multics System is

to provide users with appropriate process groups once they have dialed

up and have been logged in. This sequence is described below:

. 4-8 -

C.

(Continued)

1.

Sequence of Process Creation after Dialup
When the Answering Service detects a ringing data set it "picks

up the phone", creates, in the System Control Process Group, a

special process called a User Control Process (see Figure 1) and
"attaches" the line to the newly created process. The User Control

Process logs the user in by checking the password he gives against

-~ his user identification as stated ih the login command, and then

creates a User Process Group containing an QOverseer Process,
passing the communication line from the System Coatrol Process
Group to the newly created User Process‘Group. The Overseer
Process then creates a (single, in the case of Initial Multics)

Working Process which is able to accept commands from the user

console.

User Control Process

Each potentialiuser of the system is given a User Control Process.
The purpose of a User Control Process is to login one user. This
is accomplished by requesting the user's password and comparing it

against the password saved in a Pawsword File for the user's stated

identity. Until this validation occurs, {he user is assumed
unknown.. Because a User Control Process runs for a'potentiélly
invalid user and because its access muwst be carefully restricted

to special segmen{s, including the PassWord File, each User Process

is "owned" by the System Control Process Group.

The first "uwser" of the system, immediately after initialization,
is the System Operator who will dial in on a special line and log

in as a System Operator. An ordinary User Control Process is

49

A5
.

(Continued)

created for the System Operator, b;t once his identity is
validated, all subsequent processes created on his behalf will
have sufficiently privileged access rights that the proceduré
and data segments required té'bring the system up ¢an be

dynamically attached to his processes as needed.

A1l subsequent users will be "normal" users with access privileges'
appropriate to their identities as verified by the User Control

Process assigned to each at login time.

Thus, it is the responsibility of a User Control Process to
validate the iden{ity of any user who attempts to log in, and
having done so to propagate his identity to all subsequent

processes created on his behalf.

In versions of Multics subsequent to Initial Multics, the User
Control Process will also have accounting responsibilities,
insuring, for example, that an otherwise valid system user is not

allowed system access if his account is out of funds.

User Process Groups

Once logged in, each user is assigned his own User Process Group.
This is done in two steps: first, his Usér Control Process creates
a User Process Group with an OVefgeer Process. Next, the Overseer
Process creates a Working Process for the user. In Initial

Multics, only one Working Process will be allowed to each user --

a restriction which may be lifted in later versions.

4=10

C.

3.

(Continued)

A

Overseer Process
As explained in A-3 above, the principal function of the
Overseer Process is to control the orderly stopping of a

process group. In Initial Multics the stimuli to the Overseer

Process are the console quit interrupt and the hangup -- received

indirectly through the TTY Manager Process. Most of the life

of an Overseer Process is spent in the blocked state, waiting

for a signal requesting that the Working Process be stopped.

In later versions of Multics, it is planned that the scope
of the Overseer Process be widened to accept other signals,
e.g., automatic logout requests from the Load Control Process,

and to permit the stopping of more than one Working Process.

Working Process

The Wdrking Process is the most important process in the
Multics System since it is the one which does all the direct

work for the Qser.

When a Working Process is created by its Overseer, its Process
Initialization Table contains the name of a special probedure
called the listener, which thus becomes the first procedure
executed in the process. This procedure "listens" to the
teletype, waiting for a command to be issued. When a command
is detected by the listener, it invokes the machinery
necessary to properly interpret the command and. its arguments,
thereby initiating a "chain" of calls eventuaily leading to

the accomplishment of the user's task.

L=11 -

3. b. (Continued)
Thus, it is the Working Process which interprets all user
commands (other than login) and performs or initiates the

work implied by these commands.

The Quit-Restart Sequence

One of the most important controi functions provided by the Multics
System is that of permitting a console user to stop a set of processes
running on his behalf and subsequently either restart them or start

a new set of processes instead. This capability is essential to

any well-implemented interactive computer system. .

In Initial Multics, this capability is implemented by means of the
Typewriter Manager Process and the Overseer Process of a Working

Process Group.

When a console user decides that his computations are not proceeding
satisfactorily, he may push the quit button on his console. This

button causes an immediate interrupt called a console quit interrupt

at the processor even if the user's console is currently outputting

information.

"~

Whichever broqess happens to be executing at the time will trap to
its interrupt interceptor, discover that the interrupt is intended
for the Teletype Manager Process, notify the Teletype Manager Process

of the event and then continue from the point of the interrupt.

When the Teletype Manager Process acquires a processor, it intérprets
the nature of this particular interrupt, discovers it to be a console
quit interrupt and notifies the Overseer Process of the target process

group by sending it a stop event.

4-12

(Continued)

When the notified Oveéseer Process, which is usually blocked waiting
for a stop event, acquires a procéssor, it is able tolquit all processes
in thé Working Process Group, regardless of their current activity.
(In Initial Multics, this entails only one Working Process).‘ When
the Overseer receives a stop event, it issues a special process

interrupt, the guit interrupt, to the Working Process. This interrupt

causes the Working Process to block itself even if it happens to be
executing on another processor at the time and to ignore all subsequent

attempts to awaken it by processes other than its Overseer.

In this way, the console user is able to stop his Wérking Process

regardless of its current activity.

However, in order for the user to be able to proceed after quitting

his Working Process, he ms t have another process which can interpret

1]

-

his subsequent commands.

Therefore, immediately upon quitting the Working Process, the Overseer
Process creates a new Working Process for the user and it becomes the

effective Working Process. ,

The user now has two choices in Initial Mﬁltics. He can either restart
his original Working Process or he can forget about it and use the
newly created process as his new Working Process. To restart, the

user merely types "start". This causes the new Working Process to
signal the Overseer that a restart is desired. The Overseer then
restarts the old Working Process at the point which the quit interrupt
occurred and destroys the new Working Process as it has already served

its use -- namely to interpret the command imsediately following the

console quit.

4-13

(Continued)
To destroy the old Working Process, the user merely types any command
other than "start", whereupon the new Working Process assumes the

role of the Working Process and the old Working Process is discarded.

MULTICS "Daemons"

The Multics System employs many processes to regulate the use of its
facilities. Many of these processes are invisible to the user, but
negertheless are running concurrently with his processes. Processes
which are assigned to no particular user, and do not perform diréct

work for the user, but instead "belong" to the system, are called
"daemon" processes. Typically, they perform load balancing and resource

management functions and are requiréd in order to keep the System well

balanced.

Initial Multics will have relatively'Few daemons; they include at
least the following:

- An "idle" process. This process runs when no other process in the
system needs a processor.

- The File System Device Monitor Process. This process is notified
whenever an interrupt occurs for the drum.or disc being used for
the File System. It is the only process which can interpret such
interrupts. , ' -

- The Teletype Manager Process

- The Tape Manager Process

- The Initial Multics File System Backup Daemon
("Brute Force" Dumper Process)’

- The Answering Service Process.

4=14

E.

F.

(Continued)
In subsequent versions of Multics, additional daemons are planned

for implementation.

The Multilevel Monitor Process. This daemon will be responsible

for maintaining a proper level of occupancy on all on-line

storage devices comprising the File System device hierarchy and

for matching the access speed requirements of each ségmeni residing

in the hierarchy to the responsivenéss of available storage devices.

- The Storage Backup and Storage Reload Process Groups. These
daemons will control the copying of segments onto removeable
storage for subséquent reloading in the event of a storage
hierarchy failure, in which case it wiil reload the system.

- The Load Control Process. This daemon will limit the nuaber of
.concurrent users on the systeﬁ in order £o maintain an acceptable
level of response and throughput.

- The Absentee Monitor Process. This daemon will run "backgro;nd"
Jobs.in the Multics environment.

- The Clock Manager Process. This daemon will be responsible for
the calendar alarm clock. |

- The Administrative Process Group. This daemon will perform

periodic auditing and accounting fuctions.

- Device Managers for other peripherals.

Summary

This section has described the administrative logic in Multics as
embodied in the Multics System. The building blocks used to build
this governing body of logic are the process and the process group.
The Multics System may be viewed as the first applications system to

be implemented using the Multics process. The purpose of this

F. (Continued)
"applications system" being to provide each user with his own working

process and a means by which to communicate with it and control it.

4=16

V.

USER INTERFACES FOR INITIAL MULTICS

The user's view of a system is influenced primarily by the commands by
which he may communicate with the system, the languages with which he
can implement applications on the system and the services which his

programs can request of the supervisor. These features are described

below for lnitial Multics;

A. Commands
All personnel communicating with the Multics System are considered to
be "users", where the term applies to non-programmers conversing
with pre-packaged applications, Multics system programmers and even
the Media Operators and System Operator in charge of the system.l‘The
interface.betWeen all these users‘and the commands available in Multics

is a software module, known to each interactive Working Process, called

the Shel .

1. The Shell

The Initial Multics Shell serves several functions. The primary
function served is as an interpretive interface between the user

console and the command procedures in the Library Directory:

When a character string comprising a copmand and its arguments

are typed, the Shell intercepts the character strihg'and removes
the leading substring which it interprets as a command précedure
name. The Shell then calls thé Segment Management.Module, known
to each process, requesting that the named command be located in

the directory hierarchy using standard search rules and made known

5-1

(Continued)

to the process. Finally, once the command has been made known,
the Shell calls the named command procedure, passing the r?maining
substrings in the input character string as argumehts to the
command procedure. The command then commences execution like any
other procedure. Upon completion of the command actxon, the

command returns to the Shell whlch may then request the next

* command.

In addition to this primary function, the Shell also recognizes

a few punctuation marks forming a "meta-syntax" which can be used
to combine moré than one command in a single request from the
console. For example, the user can specify a sequence of commands
to be issued and the Shell will forward them one at a time until
the last one has been completed. Also, the Shell syntax permi{s

the notion of an” immediate value command -- any valid command can

assume this role by its being enclosed between the proper delimeters --

which permits the user to nest commands so that, for example, an

immediate value command can be used as an argument for another
command, the occurrence of the immediate value command being
replaced by its value which is in turn used as an argument to

the enclosing command.

General User Commands
Commands avallable to the general user oF Initial Multics are
abstracted below:
login = = permits the user to identify himself and verify
his identification by means of a password. Not
a generalized.command in‘the sense that it must

be the first command issued after dialing in.

5-2

2. Continued)

~ list

rename
delete
listacl

setacl
delacl

link

edit

epl
eplbsa

logout

displays the contents of a directory Ffle,

listing file names, types, access modes, lengths,
and dates created and modified.

changes the name of a file.

deletes a file.

lists the access control inFormati?n for a file.
sets the access control information for a given
file with ;espect to a given user.

deletes the access coﬁtrol information for a

given file with respect to a given user.

créates a link -- a "pointer" —- to a file in the
file hierarchy and places it in a specified.
directory.

permits context editing of an ascii file, including
selective printouts and selective deleiion,v
replacement, and insertion of text.

compiles aifile using the EPL compiler.

assembles a file using the EPLBSA assemblér;

causes the systematic termination of the user's

processes.

fn addition to these commands, the user will be able to write

his own commands so that his own procedures can be executed.

After a process has been stopped by the console quit interrupt,

the following command convention will be followed by Initial Multics.

. start

causes the quit process to resume at the point of

interruption.

5-3

(Continued)

’

any other - causes the quit process to be discarded and a

command

new process siibstituted in its place.

Operator Commands

Multics provides for the recognition of Media Operators to

manage tape reels and unit record devices and one System Operator.

who has the authority to control the entire system. In Initial

Multics these two functions will be combined.

The Operator, in addition to the general user commands will be

able to issue the following special commands:

"op_here -

get_line -

set_line -

startup -

media -

shutdown =

typed after the operator logs in or quits to -
permit him to type any of the following special
operator commands.

reports the status of communication lines attached
to the Generalized Input/Output Controller.

enables or disables the specified number of
communication lines, allowing the operator to

permit or augment reﬁote access to the system or
prepare to shut it down.

causes the creation of the specified System Process:
Group. In Initial Multics, this will be used to
initiate the dumping activity.

lists any messages for the Media Operator. In
Initial Multics, will be used to receive messages
from the qumper regarding iape mounting requirements.

shuts down the entire system.

B.

Languages
The languages to be provided for Initial Multics are:
- EPL (compiler)

- EPLBSA (assembler)

All features described in the specification for these languages will
be provided under Initial Multics, including the signalling and
"non-local go-to" facilities of EPL in-the ring-structured environment

of Initial Multics.

The EPL language is of particular significance in Initial Multics
since the system is implemented almost exclu31ve1y in EPL. Therefore,
all supervisory entry points are described in EPL and obey the EPL

conventions regarding data declarations and names.

Other candidates for inclusion into Initial Multics and subsequent

versions of Multics include BCPL, SNOBOL 3, PAL, and FORTRAN IV.:

Supervisor Entries and Utility Procedures

There are a large number of supervisory entry points in lni@?al
Multics which may be called by the user from ring 32. |In addition,
there are some utility procedures, some of which are designed to
intervene between the user and certain supervisory entry points

so ‘as to simplify the user/supervisor interface. Many of these

entry points and utility procedures allow the user 1o write procedures
which can perform the same functions which the Shell invokes as thev
result of user commands from the console, thereby permitting commands

to be invoked not only by a user from his console but also indirectly

by procedures he has written and attached to his process.

Initial Multics will include but need not be limited to the -

following Supervisor entries and utility procedures.

5-5

C. (Continuad)
1. Scgment Management Module Entries

smmfpinitiate - - makes an entry in the Segment Name Table
associating a given call name (i.e., the
name by which a procedure references a
segment) with a segment located in the file
hierarchy by a given path pame (i.e., the
list of allldirec{ories between the segment
and the "root" of the hierarchy), and returns
the segment number. The segment is-made
known if necessary.

smm$get_segment - returns two segment numbers; one for thg
segmenf whose call name is supplied and the
other for a related segment, such as the
named segment's linkage segment. The segments
are'searched for and made known if necessary.
An entry is made in the Segment Name Table.
This call is tailored primarily for the Linker.

smmbget_set_ptr = - returns a segment number for a segment, given :
the segment call name,. provided an entry for
the call name already exisﬁs'in the_Segment”
Name Table.

smm$get_path_name - returns the path name of a segment given its
segment number.

smm$set_name_status - a general-purpose call combining many of the
above capabilities. Permits, for example,
the location of, creation of, or copying of

a segment.

5-6

(Continued)

smmbterminate

Directory Supervisor
list_dir

status
chname
delentry

readacl

writeacl

set$copysw

appendb

appendl

"disassociates" a call name from a
segment number, removing an entry from
the Segment Name Table. Is the converse-

to smm$initiate.

Entry Points

itemizes the contents of a directory.

itemizes the contents of a single specific

entry in a directory.

changes name of an entry in a directory.
deletes a specified entry in a directory,
first deleting the segment to which the entry
points.

returns the Access Control List of a non--
directory or the Common Access Control List
of a directory.

replaces the entire (Common) Access Control
List for a specified directory or non-directory.
change the setting of the copy switch for a
specified segment. If on, each user of this
segment will get his own private copy.
creates a new branch, i.e., set of segment
attributes, in the file hierarchy by appending
it to a specified directory. This i§ how a
segment is created.

creates a‘new link in a spécified directory.
A link is a "pointer" to a seément described
elsewhere in the file hierarchy and can be
used to reference the segment by poihting to

its branch.

(Continued) '

setml | - changes the maximum length of the segment
specified.

movefile - moves a segment from one section of the

hierarchy to another.

Segment Control Entry Points

uim$truncate_seg - reduces. length of a segment by-discarding
information at the end of the segment.

check_ring ' - checks whether avgivén set of segments is
accessible from a specified ring. Important
for-validating arguments passed on inter_ring

czlls.

1/0 System Entry Points

attach . - associates an joname to a device (or another

ioname) within the framework of a process
group; defines the type and the mode associated
| witE the attachment. An ioname is a symbolic
name which identifies a device or a frame
(a frame is a data item which may be read
from or written into as if it were a device).
The type of the attachment specifies the nature
of the ob ject associated with the ioname (tapg,
_printer, file, etc.). The mode describes
certain characteristics related to tHe attach-
ment (e.g., readagle, writeable, appendable,
random or éequential access, etc.)

detach - - removes the association established by an

attach call. .

5-8

(Continued)

localattach - identigal to attach but the séope of
attachment is specific to the process rather
than to the group.

divert - suspends aﬁy current 1/0 on the specifigd
attached device and allows immediate
initiation of new 1/0 on %he_specified new
ioname. -

revert - reinstates the original attachment suspended

| by the previous divert call.

resetread - deletes unused read-ahead data associated
with the specifiéd ioname.

resetwrite - deletes unused write behind data associated
with the specified ioname.

abort : ' - cancels any physically incomplete prevfbus
read and write calls with the‘specified ioname.

read - reads into the specified workspace, the
requested number of elements from the frame
'spéciFied by the gipen ioname.

write - writes from the specified workspace the
requested number of elements onto the Framé

specified by the given ioname."

Interprocess Communication Entry Points

ecmfcreate_ev_chn

- creates and deletes an event channel
ecm$delete_ev_chn

scm¥decl_ev_call_chn _ declares an event channel to be of type

1" n n
ecmdecl_ev_wait_chn "event call" or "event walt

(Continued)
ecmset_call_priority

ecmset_wait_priority
ecm$give_access -

ecmPset_event . -

wedwait -

wchtest_event -

Utility Procedures

assigns priority to event_call channels or
to event_wait channels in the process.

gives access of an event_channel to a list
of process groups.

records the occurrence of an event in the
appropriate event_channel and wakes up the
corresponding process.

causes a process to wait.for an event to occur.

tests if an event has occurred.

Only the more important utility procedures are listed here.

'

a. Basic File System-associated procedures

These procedures serve as simplified interfaces with many of

the Directory Supervisor entry points described above.

change_name -

delete_entry -

append_branch -

append_link -

set_max_length -

move_file -

set_copy -

removes an old name from a directory apa
adds a,new name.

deletes an entry (and the associated
segment if it is a branch) from a directory.
adds a branch to a directory.

adds a link to a directory.

sets the maximum length of the segment
associated with a branch.

moves information associated with one entry
to another in a direétory;

sets the copy switch for an entry so that

each user of the segment gets his own copy

- of the segment.

5-10

(Continued) '
set_retention_date - sets the retention date for an gntry.
truncate_sey - truncates a segment.

check_access - obtains the effective mode of a segment.

| /O-associated procedures

read_cs - obtains a string of charécters from a
segment.

write_cs - puts a string of characters into a segment.

read_in - reads a string of characters from the user
console.

write_out - writes a string of characters on thé user
console.

Miscellaneous procedures
get_calendar - obtains the current calendar ‘clock reading

in microseconds and converts it to a readable

B

data-time fomm.

5-11

Vi. PERFORMANCE

A. Introduction

The purpose of the following set of performance specifications is
threefold:
1. It is meant to define consistent sets of capabilities and performance

goals repfesenting the achievement of useful systems at specified

times.

2. |t is meant to help focus attention on those Multics functions
the performance of which is critical to the usefulness of the

system.

3. It is meant to serve as criteriavin'balancing performance vs.
function as the system is modified and augmented throughout its

preliminary development stages.

The following specifications are not intended to represent a set of
rigid perFormancé and schedule requirements by which to judge the
failure or success of the Multics System;.clearly many acceptable
trade-offs are possible. Instead they are intended to sérve as a
commonly agreed-upon reference about which to define further refinements

and extensions as actual system performance becomes more sharply

defined.

6-1

Vi.

(Continued)

Bo

Overall Requirements

Before stating the performance goals, it should bé noted that the course
of action for the Multics project is to continually integrate modules
into the system so as to add new capabilities while continually

tuning various system components so as to improve performance. Hence,
the system will have both increasing capability and performance as

time progresses.

The short range goal is to produce what is specified within this

document as Initial Multics, with a small number of users utilizing the
system as a Multics development tool and obtaining reasonable response
time. The medium range goal is to produce what is ofteﬁ called.Prototype
Multics which is a system capable of replacing CTSS with some thirty

users obtaining "reasonable" response time.

For the purpose of this document, "réasonable" response time is

defined as being roughly equivaleét to that obtainable on CTSS. The
maximum number of users who can use the system is defined as that

number which allows each user to obtain reasonable response irrespective
of what the other users are doing. Of course it is assumed that the
users are not cooperatively trying to overload the system; therefore,

there will be a "normal" distribution of various types of work being -

done by the users.

No attempt will be made to define and measure the cost of using Multics
beyond stating the minimum acceptable number of concurrent users at

various stages of development given the hardware configura{ion outlined

in Sect&on 1.

6-2

(Continued)

A graph of targeted performance and capébility goals is given in

Figure 3.
32
v
(]
Number of users ® :8
0
to fully load 14 = RN =2
= g
the system - =
©
poll BN .g
4 [&
- —=
Months 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.
Targeted Performance and Capability Goals for Multics in 1968

The system numbered | contains Initial Multics without

languages, quit-start capability or Backﬁp Dumper.

The system numbered |l is Initial Multics.

The system numbered ||| is Initial Multics with improved

capability for the Backup-Multilevel system and various new

commands.

The system numbered IV is Il with an accounting system and

various new commands for general usage.

Although this specification deals primarily with Initial Multics
(System Il in Fig. 3), the performance of system | on May 1 is of

interest as it can be used to ‘get a reasonable judgment on the lildihood

of Initial Multics attainment by July.

VI. (Continued)

C. Response Reguirements

Listed here is a set of possible "transactions" to be performed with

the value of maximum allowable mean response time. Each transaction
is specified by its beginning and ending point. The times given are
goals for the fully loaded systems defined by Fig. 3 and the single

processor configuration of Section Il.

Transaction Beginning Pt. Ending Pt. Time o
' . "/
1 dial-up Comp. of response from 10 sec ¥
dialup system that '
dialup is rec'd ' S
2 dial-up and login Coﬁp. of -response from 1 min e
dial=-up system that ‘

user is logged
in and may type

a command
command depression of "wait" typeout 3 sec 7
acknowledgment carriage signifying -
return after command has
command type- been received
in .
. . N
trivial commands: depression of commencement 10 sec v
commencement of carriage of typeout by
result delivery return after command
(echo) type-in
5 invocations of commencement "ready" print- 70 sec -V
trivial (echo) of type-in of out after
command requiring command completion of
minimal typing - 5th echo
typeout of 30 start of finish of 1.2 x. %
lines by edit typeout typeout typewriter
- speed
type-in of 30 lines start of end of type-in 40 words/min _/
to edit type-in '

trivial edit; e.g.,
modify a line

depression of

completion signal

carriage return at console

after type-in

10 sec N4

2 min : J//

ready typeout'at
command completion

9 epl compilation of
"end statement”
program

type-in of
epl command

6-4

(Continued)

10

11

12

13

14

15

16

17

Transaction

eplbsa assembly
of "end statement”

eplbsa assembly of
2-3 source page
program

epl compilation
of ™ypical™ program
of 2-3 source pages

sequence of links,
lists, edits

quitting

quitting and
starting

interactive resp.
within some
procedure

tight computation
loop which would
take 10 secs if
wired down with
only one user on
system.

Beginning Pt.

Ending Pt.

type-in of
command

type-in of

command

type-in of
command

beginning of
command
sequence

depression
quit button

depression of

quit button

depression of
carriage
return

start of
computation
by elock read

ready typeout

at command comp.

ready typeout of
command completion

ready typeout
at command
completion

end of

‘command

sequence

response by
quit responder

continuing of
operation

beginning of
typeout

end of
computation
by clock read

time to

perform

similar
runs on CTSS

10 secs

30 secs ‘P[-

Time o
, v
1 min .
5 min v’
30 min- /

v

10 secc v/

1-2 minsv .~V(/

Times should be considerably better for a lightly loaded system or a',

system with more resources; e.g., 2 processors.

It is suggested that system performance bg measured by having the

required number of users perform a standard "script" comprised of -

some or all of the above transactions, the response to each of which

would be measured and averaged.

6-5

