R . . RS- P L e T AT R ITINE N a2 e G g s e sers v ek T R . - T e e .

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BC.2,02 1

| Drafet: for approval =
© Publisheds ;/27/6% h g

Jdentification. a ‘ “,
. . ea

On the Interpretation of ASC!{ Charactar Streams wlthin Multics,
-J. He Saltzer, C. Strachey

Acknowledgement

The concept of a canonical representation of a printed llne Image
which Is described here has bean used in at least two character
orlented systems, In TYPSET on the !|BM 7094 (as suggested by Eari
van Horn) and the TITAN operating system on the ATLAS computer.

Discussion

Characters are Intended ultimately for human communication, and
conventions about a character stream must be made with this in
mind. A character stream Is a representation of printed llnes.
In general, there are many possible character streams which
represent the same line. In particular, on Input a typlst may
produce the same printed line twice with different sets of key
strokes. For example, the line

start ida alpha,b get first result.

may have been typed in with either spaces or horizontal tabs
separating the flelds; one cannot tell by looking at the printed
image. Since the human not blessed with a tape recorder memory
cannot by reading distingulsh between several ways of typing @
printed representation, no program should deliberately attempt to
distinguish, elther..

For example, a program should be able to compare easily two
character streams to see |f they are the ''same" In the sense that
they produce the same printed Image. It follows that all
character input to Multics must be converted into a standard
(ganonical) form., Similarly, all programs producing character
output, Including editors, must produce the canonlical form of
output stream,

Effectively, we have said that of all possible strings of ASCH]
characters, only certain of those strings will ever be found

within Multics, All of those strings which produce the same
"equivalent" printed effect on a typewriter console are
represented within Multics as one string, the canonical form for
that printed image.

No restriction has been placed on the human belng at his consocle;
he is free to type a non-canonical character stream, Thils stream
wili automatically be converted to the canonical form before It
reaches his program, (There must be an escape hatch for the user
who wants hls program to receive the raw Input from his
‘typewrlter, unprocessed in any way. We assume that such an

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BC.2.02

b

ascapa hatch s provided.)

Simllarly, a device Interface module (DIM) Is free to rework a
canonlcal stream on output Into a different form If, for example,
the different form happens to print more rapldly or reliably on
this device,

We assume that every DIM is able to determine unambliguousliy what
preclse physical motion of the device corresponds to the actual
character stream coming from or going to it, 1In particular, the
DIM must know the locatlion of physlical tab settings. This
requirement places a constralnt on devices with movable tab
stops: When the tab stops are moved, the DIM must be informed of
the new settings.

Ihe Canonical Form

To describe the canonlical form, we glve a set of definitions of a
canonical message, Each definitlion Is followed by a dlscussion
of Its impliications. Formal definitions are Included for the
benefit of readers who find them useful. For the reader who
finds them confusing, they can be safely ignored wilthout loss of
content. In the formal definitions, capitalized abbreviations
stand for defined Multlcs control characters as given In section
EC.2.01 and the vertical bar means "or',

1. The canonical form deals with messages. A message consists
of a sequence of print positions, possibly separated by,
beginning, or ending with carrlage motion.

{message> ;;; {carriage motion>{<print position>
|<print position>{message>
{<carriage motion><print position>{message>

The most important property of the canonical form Is that
graphics are in the crder that they appear on the printed
page reading from left to right and top to bottom, Between
the graphlic characters appear only the carriage motlion
characters which are necessary to move the carrliage from one
graphlic to the next. Overstruck graphics are stored In a
standard form inciuding a backspace character (see below).

2, There are two mutually exclusive types of carriage motion;
gross motlon and simple motion.

<carrlage motion) ::= <gross motion>|<{simple motion>
f{gross motion><simpie motion>

Carriage motion generally appears between two graphics; the
amount of motlon represented depends only on the relative

position of the two graphles on the page. Simple motion
separates characters wlthin a printed 1ilne; it Includes
positioning, for example, for super~ and subscripts. Gross

motion separates lines.

MULTICS SYSTEM=-PRUGRAMMERS® HAHUAL section 8C,2,02 3

3a

b

5e

Gross motion conslsts of a New Line (NL) character, possibily
followed by asny numbar of form feed characters (FF), or a
single relative vertical tsbulate (RVT) character, or both.

<gross motlon> ::® (NL>|<NL><gross verticai motion>

Cgross vertical motiond ::= CRVTI|LFFD
' [<FF>{gross vertlical motion>

The Relative Vertical Tabulate character includes the amount
of vertical motion, $0 no more than one is ever needed. Form
Feed Is the one significantly context dependent character
which may appear In & canonical stream; Its precise
interpretation depends on the contents of 1ines which have
passed since the last Form Feed character. The DIM must
transiate fixaed vertical tabs Into relative vertical tabs,
and Insert New Line characters as required.

Simple motion consists of a single optional Relative
Horizontal Tabulate character (RHT) or a Space character ($P)
followed by some number {possibly zero) of vertical half line
forward (HLF) or reverse (HLR) characters, Horlzontal motion
of more than one space Is always represented as a single RHT
character, The number of vertical half line feed characters
is exactly the number needed to move the carrlage from the
lowest chavacter of the preceding print position to the
highest character of the next print position.

<simple motign> ::= (RHTY>|<RHT><simple vertical motion>
J<SP>|<SP><{simple vertical motion>
j<simple vertical motion>

{simple vertical motion)> ::» {up feed)}{down feed>
Cup feed> ::= (HLR>|<(HLR>Cun feed)
{dewn feed> :1:= (HLF>|<HLF>{down feed)

The hasls for the amount of simple carriage motion
represented Is always the horlzontal and vertical distance
between print posltions that appears on the actual device,
in the translatlon to and from the canonical form, the DIM
must of course take Into account the actual (possibly
variable) horlzontal tab stops on the physical device.

A print position consists of some non-zero number of
character positions, occupyling different half line vertical
positlons in the same horlzontal carriage position. All but
the last character position of a print position are followed
by a backspace character and soeme number of HLF characters.

Kprint position)> ::= (character position
j<character position><{BS>{down feed><{print position>

) O MULTICS SYSTEM~PROGRAMMERS' MARUAL Section BG,.2.02

6. A character pozition consists of 23 sequence of graphic
formers separated by backspace characters. The graphlc
formers are ordered according to the ASCI! numeric wvalue of
the graphics they contaln. (The first graphic former
contalns the grepinlc wlth the smalliest c¢ode, stc.) Two
graphlc formers contalning tha same graph!c will never appear
iri the same character positlion. :

{character position) ::= (graphic former)
i<graphic former><BS><character posltion>

Note that all possible uses of 3 backspace character in a raw
Input stream have been covered by statements about horizontal
carrlage movements and overstruck graphlics,

7; A graphle former is a possibly zero-tength sequence of
graphic controls foilowed by one of the 94 ASCilI non~blank
graphlc characters.

{graphlc former)> ::s {graphlic>|<{setup sequenced{graphlc)

8§, A graphlic setup sequence s a color shift or a bell (BEL) or -

3 color shift followed by 3 bell, The color shift oaly

- appears when the following graphle Is to be a different color
from the preceding one In the message.

{setup sequence> ::» {(color shift>|<(BEL>|<color shift><BEL>
<color shift> ::= <RRS>|(BRS>

in the absence of a caler shift, the flirst graphic In a
stream {s printed in black shift.

Control characters not defined for Multics are treated similarly
to bell. They appear immedlately before the next graphic typed,
in the order typed. By virtue of the above deflinitlons, the
defined Multlcs control characters HT, VT, and CR wlill never
appear Iin a canonlcal stream,

The appavent compiexity of the canconlcal form (s a result of its
generallity in dealing with all possible combinations of
typewrlter carriage motions. Viewed In the perspecive of present
day language input to computer systems, we observe that many of
the alternatlives ara rarely, (¥ aver, encountered, In fact for
mest Input, the following threse statements, descriding a
simpiified canonical form, are completely adequate:

1. A message consists of strings of character poslitions
separated by cerviage motion.

2. Carrlage motions are elfther New Line, Relative tHorizontal
Tab, or space characters.

MULTIDS SYSTEM~FROGRAMMERS' MANUAL Section B8C.2.02

wn

3, Character posltions conslst of 2 single graphic or an
occasionat overstrusk grashic, A character position
representing overstrikes contains the numericaliy smallest
graphle, a backspace character, the next iargest graphlc,
etC: .

Thus Qe may conclude that for the most part, the canonical stream
§§!§ diffar 1igtia with the raw input stream fram which It was
erived.

Examvies.

tn this sectlion are several {llustrations of canonlcal form. The
exampies do not attenpt to covar avery concelvable wvarfation or
comblination of characters, but vather 1llustrate the Intent and
the method., (In the examples, assume that the typist's machine
has horlzontal tab stops set at 11, 21, 31, etc.)

Exemple 1:

Typist: This Is ordinary text.<KL)
Printed 1lne: This is crdinary text.
Canonical form: This ls ordinary text.<NL>

For the case of simple, straight line input, the canonical form
reduces to the original key strokesz of the typlst. Most input
probably falls into thls category.

Example 2:

Typist: start<HT>1dadHT>alpha, #<HT)get argument<NL>
Printed line: start 1da alpha,l get argument
Canonical form: start<{RHT5>1da<RHT7>alpha,t<RHT3>get argument<NL>

HT is the fixed horlzontal tab typed in; the number tagged to RHT
Iindicates the slze of the relative tab.

Example 3:
Typist: Here Full<BSX{BS»>{B5Y<BS

Printed ilne: Here fyl] means that
Canonical! form: Here _<BS>f_<BS>u_<BS>)1_<BS>! means thatd<NL>

means thatdNL>

Here Is probably the most common example of canonfcal conversion,
to Insure that overstruck graphlics are stored in a standard
pattern,

Ezample L:

Typlsg:

He s2e no solu <BSO>tiondCROCHTI(BS>(BSH>(BS>__ KNL>
Printed line:

We see po solutlion

tanonleal forms
e ones _CBSPA (BS0 goluriondNL)

{Recall thet the casrriage return (CR) does npt produce a line
feed.) The mosgt important property of the canonical form ls that
meanderings of the typlat ars irrslevant. Example & {[Jllustrates
that the typist nead merely concern himself with the printed
image, instead of a tab snd three backspaces, the typist could

have ty»ea saven space characters and produced the g¢ame printed
fmage and same canonlcal form,

