
MULTICS ~YSTEM•PRO~RAMM£RS 1 MANUAL Section BC.2.02 l

Jdeotl fl s;atJop.

Orafc: . for
Pub 11 shedi.

app"'OYf.l ,
l/2i /66 4 ... ~

. ~\.-.r.
•, ·'I;

~ '·. 4 ., f ~
' ...

On the Interpretation of ASCII Character Streams within Multics.
· J. H. Sa1tzer 1 C. Strachey

Ac;know]edaemeu

The concept of a canonical representatfon of a printed line Image
which Is described here has been used In a.t least two character
oriented systems, fn TYPSET on the IBM 709~ (as suaaested by Earl
Van Horn) and the TITAN operatln& system on the ATLAS computer.

JU IGLIIIlQD.

Characters are Intended ultimately for human communication, and
conventions about a character stream must be made with this In
mind. A character stream Is a representation of printed tines.
In &eneral, there are many possible character streams which
represent the same line. In particular, on Input a typist may
produce the same printed line twice with different sets of key
strokes. For example, the line

start lda alpha~4 get first result.

may have been typed 1n with either spaces or horizontal tabs
separating the fields; one cannot tell by lookln& at the printed
lmaae. Since tht human not blessed wlth a tape recorder. memory
cannot by reading distinguish between several ways of tYPing a
printed representation, Jl2 prosram should deliberately attempt to
distinguish, either •.

For example, a program should be able to compare easily two
character streams to see If they are the "same" In the sense that
they produce the same printed Image. It follows that all
~haracter input to Multlcs must be converted into a standard
(G§nonlca!) form. Similarly; all programs producing character
output, Including editors, must produce the canonical form of
output streamo

Effectively, we have said that of al t possible .strings of ASCII
characters, only certain of those strings will ever be found
within Multlcs. All of those strings which produce the same
"equivalent" printed effect on a typewriter console are
represented wlthln Mtiltics as on~ string, the canonical fotm for
that printed Jmase~

No restriction has been placed on the human betng at his console;
he ls free to type a non-canonical character streame This stream
wl1i automatically be converted to the canonical form before It
reaches hi~ program. (There must be an escape hatch for the user
who wants his program to receave the raw Input from his
·typewrfter, unprocessed fn any way. We assume that such an

A ~,. ';..

MULTICS SYSTEM-PROGRAMMERS' MANUAl Seetfon BCo2.,02

escape hatch Is provided.)

Similarly, a device Interface module (DIM) Is free to rework a
canonical stream on output Into a different form If, for example,
the different fonm happens to print more rapidly or reliably on
th Is dev I ce.

We assume that every DIM Is able to determine unamblcuously what
precise physical motion of the device corresponds to the actual
character stream comlna from or aolng to it. In particular, the
DIM must know the location of physical tab sett1n&so This
requirement places a constraint on devices with movable tab
stops: When the tab stops are moved, the DIM must be Informed of
the new settings.

To describe the canonical form, we give a set of definitions of a
canonical message. Each definition Is followed by a discussion
of Its Implications. Formal definitions are Included for the
benefit of readers who find them useful. For the reader who
finds them confusing, they can be safely Ignored without loss· of
content. In the formal deflnl tlons, capf tall zed .abbreviations
stand for defined Multlcs control characters as &lven In section
BC.2.0l and the vertical bar means 11or".

1. The canonical form deals with messages. A mesfa&e consists
of a sequence of prfnt positions, possibly separated by,
begtnnln,, or ending with carriage motion.

' <message> ::• <carrlace motton>l<prlnt position>
l<prlnt posltton><messace>
l<carriage motlon><prlnt posltlon><message>

The most Important ·property of the canonical form Is that
&raphtcs are In the order that they appear on the printed
page reading from left to right an.d top to bottom. Between
the graphic characters appear only the carriage motion
characters which are necessary to move the carriage from one
graphic to the nexte Overstruck graphics are stored In a
standard form including a backspace character Csee below)6

2. There are two mutually exclusive types of· carriage motion,
gross motion and simple motion.

<carriage motion> ::• <gross motion>l<slmple motion>
f<gross motlon><slmpie motion>

Carriage motion generally appears between two graphics; the
amount of motion represented depends only on the relative
position of the two graphics on the page. Simple motion
separates characters within a printed line; it Includes
positioning, for example, for super- and subscripts. G~oss
motion separates lines.

MULTICS SYSTEM-PROGRAMMERS' H\HUAL

3. Gross motion conslats of a New L&ne (Nl) character, possibly
followed by any number of fo~ feed characters (FF), or a
single relative vertical tabulate (RVTl character, or both.

<cross motion> ::• <NL>I<NL><cross vertical motion>

<aross vert1ca1 motion> ::• <RVT>I<FF>
I<FF><aross vertical motion>

The Relative Vertical Tabulate character' Includes the amount
of vertical motion, so no more than one is ever needed. Form
Feed Is the one slanlflcantly context dependent character
which may appear In a canonical stream; Its precise
Interpretation depends on the contents of lines which have
passed since the last Form Feed character. The DIM must
translate fixed vertical tabs Into relative vertical tabs,
and Insert New Line charact.ers as required.

4c Simple motion consists of a stncle optional Relative
Horizontal Tabulate character CRHT) or a Spa~e character CSP)
followed by some number (passlbly zero> of vertical half line
forward (HLF) or reverse CHLR) characters. Horizontal motion
of more than one space Is always represented as a single RHT
character. The number of vertical half llne feed characters
Is exactly the number needed to move the carriage from the
lowest character of the precedlna print position to the
hfghest character of the next print position.

<simple mottqn> :s• <RHT>I<RHT><slmple vertical motion>
I<SP>I<SP><slmple vertical motion>
I < s I mp 1 e vert I ca 1 mot i on>

<simple vertical motion> ::• <up feed>l.<down feed>

<up feed> ::• <HLR>l<HLR><u? feed>

<dcwn feed> ::• <HLF>I<HLF><down feed>

The bas'ls for the amount of simple carriage motion
represented ts a·fwavs the horizontal and vertical distance
between print positions that appears on the actual device.
In the translation to and from the canonical form, the DIM
must of course take Into account the actual {possibly
va~lable) horizontal t~ stops on the physical device.

5. A print position consists of some non-zero number of
character positions# occupying different half line vertical
;>osttlons in the same horizontal carriage posttiono ·All but
the iast character position of a print position are follow~d
by a backspace character and some number of HLF characters ..

<print position> ::• <character position>
l<character posltlon><BS><down feed><prlnt position>

Section BC.2.Gl

6. A eharacter position eonatsts of a sequence of graphic
formers separated by backspace characters. The graphic
formers art: ordered according to the ASCII numeric value of
the craphlcs they conta~n. (The first araphic former
eonta t ns the graph h.; wl th thta sma nest code, etc.) Two
craphic formers eont.aln¥na the Sdme graphic wtll never appear
lr; the ;;arne character position.

<charact~r position> ::• <graphlc form~r>
I <graphIc forme.r><BS><cbaracter posIt I on>

Note th~t all posslbl~ uses of a backspace character In a raw
Input stream have been covered by statements about horizontal
carriage movements and overstruck graphics.

7. A graphic former Ia a possibly zero•lencth sequence of
graphic controls foilowed by one of the 94 ASCII non•blank
graphic characters~

<araphlc former> ::• <araphlc>l<setup sequence><graphfc>

B.. A g.;raphlc settlP sequence Is a color shift or a bell <BEL) or
a color shift followed by a bell. The color shift only

. appears when the followln& graphic Is to be a different color
from the preceding one in the n~ssase.

<setup sequence> ::• <color shift>I<SEL>l<color shlft><BEL>

<color shift)·: :• <RRS>I <BRS>

In the absence of a color shift., the first craphic ln a
stream Is prtnt@d tn black shift.

Control characters not defined for Multics are treated slmflarlv
to bell. They appear Immediately befure the next araphfc typed,
in the order typed. By vtrtue of the above definitions, the
defined Multlcs control characters HT, VT$ and CR wi1J never
appear in a canonical stream.

The apparent complexity of the canonical form is a result of its
genera1lty in dealing with all possible combinations of
typewr~ter carrtaae motions. Viewed In the perspeclve of present
day lartguage input to computer systems, we observe that many of
the alternatives are rarely, If ever, encountered. In fact for
most input.,. the fo11owing three statements, describing a
simplified canonical form, are completely adequate:

lo A message consists of strt~gs of character positions
separated by carriage motion.

2o Carriage motions are either New line., Relative Horizontal
Tab, or space characters@

\

;), Character pos!tlons consist of a single gral.>hic or an
o,ceashma·~ overstruck graphic.. A character posi tlon
repre~entln& overstrikes contains th-e numerically smallest
graphic, a backspace character, the next largest araphlc,
etc. ·

lhu& we may conclude that for th~ most part, the canonical stream
will differ 11tt1G with the raw ~nput stream from which it was
derived ..

ln thh: section are several illuat~·atlons of canonical form. The
examples do not atter••Pt to cover every conceivable variation or
combination of characters, but -·ather Illustrate the tntent and
the method. (!n the examples, assume that the typist's machine
has horizontal tab stops set at llN 21, 31, etc~)

Example 1:

Typist:
PrInted ., I ne:
Canonical form:

This ls ordinary text.<Nl>
This ls crillnary text.
This Is ordinary textQ<NL>

For the case of simple, straight 1fne Input, the canonical
reduces to the original key strokel of the typist. Most
probably falls Into this category.

Example ~=

Typist: start<HT>1da<HT>atpha,4<HT>&et argument<NL>
Prtnted line: start lda a1pha,4 aet argument

form
input

Canont ca 1 form: start<RHT5>1da<RHT7>alpha,4<RHT3>get argument<NL>

HT is the fixed horizontal tab typed ln; the number tagged to RHT
indicates the size of the relative tab.

Exftmple 3:

Typist: Here fu11<BS><BS><BS><BS> ____ means that<Nl>
Printed 'II~Ht: Here !Yll means that
Canon t ca 1 form: Here _<BS>f_<BS>u~ .. <BS>l_<BS>1 means that<Nt>

Here h• probably the most common example of canonical conversion,
to lnsur~ th-t overstruck graphics are stored in a standard
patterno

Example 4:

Typist:
\'>!e se~ no s.o1u <BS>tlon<CR><HT><BS><BS><SS> __ <Nl>
Pd nted lL·1e:
We see rm solutJon

Canon I c:a 1 forms
W~ ~hH'!i _<BS>I't_<:BS>o I01tttlort<Nl>

(Recall th~t the carriaae return CCR) does nat produce a line
ft~ed.} The moat Important property of the canonlea1 form !s th~t
meanderfn&& of the typlat are Jrretevant. Example 4 Illustrates
thS!t thtJ typist need merely concern himself with the printed
Image.. instead of a tab and three back.spac:f.ls, the typist could
have typed seven space characters and produced the same printed
Image and same canonical form.

