MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.10.02 PAGE 1

Draft for approval
Published: 03/04/66

jdentification

Clock Conversion Routines
Arthur Evans, Jr.

rpos

As explained in Section B8D,10.01, the hardware Calendar
Clock contains an intezer which is the number of
micro-seconds since one micro-second after midnight on
January 1, 1901, Greenwich Mean Time (GMT), and the term
"Calendar Clock time" always refers to such a quantity. All
times stored in the system will be Calendar Clock times, of
course, but a more readable form of time must be provided
for the user, Further, times supplied by the user to the
system must be in a format convenient to him., This section
describes the conventions and techniques used in converting
Calendar Clock times to a format convenient for the user
(output conversion) and in converting times produced by the
user to Calendar Clock times (input conversion).

Requirements

In general, it is expected that the wuser will want times
printed on his console to acree with the time on the clock
on his wall., Since most users will he physically close to
the computer, the local time at the computer will usually be
what is wanted, "Local time" must of course be '"current
1ocal time', so the conversinn routines must he cognizant of
daylieht saving time., The user who is far enougsh from the
computer to be in a different time zone presumably wants
times to be printed in his local time, and such a user must
be accommodated, Finally, it should be noted that a- user
giving a time to the system (for example, the time when a
process is to be awakened) surely wants to give it in his
own local time. Thus the input conversion routines are also
concerned with this problem. o

There is one final requirement -- that the user concerned
with dates hefore 1901 or far in the future be able, if he
wishes, to use the standard system time converssion routines.
Although the 52-bit hardware clock will overflow on October
21, 2042, the conversion routines must handle properly times
further in the future than that. They must also process
properly negative calendar clock times, representing dates

before 1901, '

The mechanism used is to include in each process profile
(i.e., user's profile =- see Section BX.0.01, The SHELL) the
necessary data indicatine how he wants time conversion to be

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD,10.02 PAGE 2

\ .

done. At first glance it appears that all that 1is needed
for this purpose is a constant to-be added to the <calendar
time before the conversion, the constant usually being some
integer (perhaps negative) times the number of micro-seconds
in an hour and representing the separation between the
user's time and GMT. Actually, however, things are a bit
more complicated, because of daylight saving time.

The Time Conversion Table

The input and output conversion routines have available to.
them a table of correction factnrs, called the Time
Conversion Tahle (TCT). Fach "line" of this table has three
entries, so that the i-th line is: ' .

time(i) constant (i) string(i)

Whenever a time is to he converted by the output conversion
routine, the time is looked up in the first column of the
TCT. Let time(k) be the first time found which exceeds the
argument, Then constant(k) is added to the argument before
doing the conversion, and strine(k) identifies the time.
For example, the standard TCT at the Project MAC computer
mi ght be

24 Apr 19565 0600 -5 hours EST

30 Oct 19366 0600 -6 hours EDT
30 Apr 1967 0600 -5 hours EST
29 Oct 1967 0600 -6 hours EDT
29 Apr 1368 0600 -5 hours EST
28 Oct 1968 0600 -6 hours EDT
28 Apr 1969 0600 -6 hours EST
27 Oct 1969 0600 -5 hours - EDT

(end of table) -5 hours EST

(The "time" entry on the last line of the table is to be
filled in with the largest number which can be stored into
the available field,) The times shown in column one are in
GMT, and it is to be understood that the TCT in the computer
will contain the corresponding calendar clock time. Column
two will he a siened inteecer which is the equivalent number
of micro-seconds. The dates siven represent the last Sunday
in April and in October, and the times given are the times
when Adaylieht savineg time coes in and out, . (0600 GMT is
0100 EST,) e

The tahle shnwn provides that all times before 24 April 1966
or after 27 Octoher 1969 will he printed as EST, 2and that
times hetween these two dates will he printed correctly as
EST or EDT. As the system ages, the table will be extended
so that, at any given instant, all times within the next
(say) three years will be printed correctly, If it scems
desirable to keep the table 1length constant, lines can
simultaneously be deleted from the top of the table.

MULTICS SYSTEM=-PROGRAMMERS' MANUAL - SECTION 8D.10.02 PAGE 3

Note the third column of the table. This string is printed
with each time (and is, indeed, part of the character string
which is the time) to make unambiguous the -meaning of the
printed time, '

user

Mow cnnsider the user in, say, Los Angeles. In his
different

profile there will be a similar tahle with
entries, reflecting these differences:

1. Los Anceles is -8 hours from Greenwich, not =5 hours,
so that the magnitudes of the times 1in the second
column will (in general) be increased by three hours,

2., Daylight saving time starts and stops on different
dates in California and Massachusetts. The dates in
the first column must be altered accordingly.

3. The strings in column three will be "PST" and "PDT".

Clearly, an appropriate table could be constructed for any
place in the world -- even one like Afghanistan which is +4
hours 26 minutes from Greenwich,

Now consider the man who usually uses the computer at MAC,
but who happens to be using it from, say, Phoenix for a few
days. The first time he logs in from Phoenix, he may well
find it useful to have a constant two hours added to each
column two entry,

Now consider the user who hahitually travels around the
world usine the system., HYe may choose to get all times in
GMT, so his TCT would contain the single entry

(end of tahle) +0 hours GMT

As above, "end of tahle" represents the largest integer
which can bhe stored in the avaliahle field, -

Finally, consider the wuser who is concerned with times
hefore 1901 and/or after the upper limit of the (hardware)
Calendar Clock, Clearly, such a user will need 1input and
output conversion routines of greater sophistication than
those needed by most users, For example, going before 1901
or after 2099 requires knowing that neither 1900 nor 2100 is
a leap vear; going before 1572 requires knowing about the
Gregorian and Julian Calendars; and going more than 1965

years into the past requires knowing about AD and BC. On
entry, the conversion routines check with a quick test that
the data is within the "standard" range. If so, all s
well, If not, a more sonhisticated routine is called to do

the conversion. Although this Tatter routine is part of the
supervisor, it will only he fetched into core when (and if)
it is actually needed. Thus no one '"pays for'" this routine
unless he uses it.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD,10.02 PAGE 4

One final point should be noted: The conversion routines
are all on the user's side of the outer security wall, so he
is free to replace them by routines of his. own if he so
chooses.

The OQutout Conversion Process

We now consider in more detail the process of <converting a
calendar time to a form interesting to a user. Actually,
the output conversion is done in two steps, only the first
of which will be discussed here. Given a calendar time, the
output conversion routine will produce for the caller the’
following eight values: :
YEAR An integer, four decimal digits precision, which is
the calendar year.
MONTH A two digit integer from one to twelve which is the
month number, _

DAY A two digit number from one to 31 which is the day
of the month, (DAY will never be greater than the
numher of days in the month in question.,)

HOUR A two Adicgit integer from zero to 23 which 1is the
numher of hours since midnicht,

MIN A two digcit integer from zero to 59 which 1is the

_ numher of minutes since the hour,
SEC A two digit integer from zero to 59 which 1is the
number of seconds since the minute, :
USEC A six digit integer from zero to 999999 which is the
number of micro-seconds since the second.
ZONE A three character string which identifies the time
zone, such as "EDT",

It should be clear that all of the information 1in the
calendar clock time is reflected in these eight quantities,
and that the calendar time could be recreated from them.
Further, it is clear that it is easy to write a routine
which, given these eight quantities, will produce a
character string such as

1323,2 EST 13 Jan 1966
or any equivalent string that seems desirable.

The Time Zone Tahle

L]

The routine that Aoes input conversion of times must have
available to it a tahle of time zone abhreviations, The
user may tyne '"™MST" as part of a time in order to make
unambhiguous what he means, so the input conversinon routine

must know that the strineg "MST'" means =7 bhours from GMT,
The Time Zone Table (TZT) has two entries on each line: a
three-character string and a siened integer which s the
nunmber of micro-seconds from- GHMT. A standard table s

availahle to the system containing the time zone

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.10,02 PAGE 5

abbreviations most used at the instal]atioﬁ, but the user
may supply in his profile a TZT tailored to his own use,

The process of processing a time zone abbreviation supplied
by the user takes place as follows: |If the user has his own
TCT, the abbreviation is first looked up in the third
column, the assumption heing that he is unlikely to input an
abbreviation unless he has provision to output it, If the
ahbreviation is found, the column- 2 entry on that 1line s
used as the correction constant; but if it 1is not found,
further searchine takes place, If the user has supplied his
own TZT, that is searched, ‘1f not, though, the system
standard TZT is used, ' »

The lnput Conversion Prncess

A time supplied by the user to the system falls into one of
two cases: Either a time zone abbreviation is explicitly
given or one is not. In either case, though, the first part
of the input conversion process is the same =-- the typed
time/date is converted to a binary integer as if it were
GMT. |If the user has supplied a time zone abbreviation
(such as "EDT"), it is looked up as described above, The
appropriate correction is then subtracted from the binary
integer to get the proper calendar time,

If a time zone abbreviation 1is not supplied, the binary
integer is looked up in the usual way in the TCT and the
corresponding constant is subtracted from (not added to) it.
If there is no amhiguity (see below), the result 1is the
desired calendar time,

There are several anomalies or ambiguities that may be
detected in the input conversion nrocess, a few of which are
as follows:

1. The time 2zone supplied by the wuser may be
incompatible with the date and time typed., While it may be
reasonabhle to accent "EST" in June, it 1is almost surely
improper to refer to "EDT'" in December,

2. The time 0130 does not exist on the last Sunday in
April (in Massachusetts), since at 0100 EST on that date the
legal time jumbps to 0200 EDT. Presumably a reference to
0130 EST means a time 31 minutes later than 0053 EST, but a
reference to 0130 with no qualification 1is probably wrong
and a reference to 0130 EODT is surely wrong.

3, The time 0130 is ambiguous on the last Sunday in
October, since there are two of them. (At 0200 EDT the time
becomes 0100 EST.) Of course, either 0130 EST or 0130 EDT
is unambiguous and acceptable.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION B8D,10.02 PAGE 6

4L, The data may be nnor, The time "1168" (where the
last two Aigits are the numher of-minutes after the hour) or
the time "2505" are prohbably wrong, as is the 32-nd of the
month, the 30-th of February or month number 13. ' '

5. Abbreviated date-times may be permitted. For
example, the wuser may omit typing the vyear if he is
referring to "this year'", or the date if it is '"today".
However, there are cases where the intended meaning is clear
to the user, but not so clear to the program. (For example,
at two minutes past midnight, does "2358" refer to today or.
to yesterday? Similarly, on January 5, does December 28
refer to last year or to this year?) '

The processing of problems such as the above is dependent on
the current setting of the '"no questions'" switch in the
process profile, Unless the wuser has indicated no
questions, he will be given an error (or warning) message
and asked to correct the data. Otherwise, the conversion
routine will make a default interpretation of the data and
go on, In absentee-user processes the problem need never
arise if the user makes a opractice of always specifying
times comnletely,

