MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD,2.02 PAGE 1

ldentification

The Binding Procedure..

G. S. Stoller

Purpose

This document describes a binder which achieves the goals set forth

~in BD.2,00.

Glossafy

See Glossary in BD.2.00.

Restrictive Assumptions

L

1.

In all object segments, the linkage-info appears in the same section
(i.e. always in the text-section or always in the linkage-section).

I't may even be assumed that this section is the text-section.

All logical-segments given as input to the binder are assumed to

_be in object-format.

Segments containing gatesband doors will not be bound.

A "frap before link" occurring on a link between two of the component
segments will not be allowed. When such an occurrence is seen,

binding will be terminated.

i

Only the latest EPLBSA entry-sequence, the binder entry-sequence,
and the PL/1 entry-sequence will be accepted. All other entry-
sequences are declared unbindable and will be flagged by the binder

when seen. If many instances of other entry-sequences are discovered,

the set of acceptable eniry—sequences may be expanded.

MULTICS SYSTEM—PROGRAMMERS' MANUAL SECTION BD.2.02 PAGE 2

Efficiency Considerations

For reasons of speed it is probably best to unpack several units of the
UZXiiE | relocation-bits at once via EPLBSA code. An array Qi11>be prepared
tz;::;: containing the relocation-information for approximately 500 words
A (1000 half—wérds) per cali to this EPLBSA—procedure. A similar

~technique will be used for packing relocation-bits.

.Sjmgiifying Assumptions
1. The linkage-info can be parsed and properly decoded without the

aid of relocation-information.

2. ‘Each definition specifying a place within the‘linkage-block that
looks liLe {he beginning of an entry-sequence is specifying an
entry.

- Strategy .
Consider the binder to be a translator (thus translator-terms can be
used in this description); as such it is a.two—pass'translator on the

components (as atoms) of the bound-segment but only a one-pass translator

- on the half-words (as atoms) of the bound-segment.

The first pass is the standard assembler-type pass of name-definition
and location-counter base-value setting. POst—processing of this pass
consists of producing all of the linkage-info (link-snap-info and

link-block) for the bound-segment by disassembling the components'

linkage~info and reassembling the final collection.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.2.02 PAGE 3

Now the second pass begins. Here the actual relocation is done and
éll references to a céﬁponent'; ljnkage—biock are converted to
intra-segment references if possible; otherwise they are converted to
references to the béQnd—segment‘s linkage-block. Postprocessing

consists of placing the linkage-info in the bound—segmeﬁt.

-Detailed strategy is given in the remainder of this section of the MSPM,

A. User~Interface o '
1. Command-type segment-handling.

2. Initialization of structures and variables directing the

- basic binder.

‘3. Set user-options.

B. Definitional pass over components.
1. F}x attention on one component.
a. From?{he symbol-section get the text-length and link-length.
* Check against values Fkom objecf—?ormat.
b. Extract information from linkage—section.
i. Extract def-pointer; if defs are in linkage-section
set flag to abort binding.
ii. Set size of ego-text-section in binder-array.
iii. Obtain size of internal—st%fic‘ahd place it in binder-
array. |
c. Obtain size of ego-symbol-~section (it is‘the ostet of

[rel_text] minus the offset of [symbol_iable]) and place it

‘

in binder-array.

MULTICS SYSTEM-PROGRAMVERS!' MANUAL SECTION BD.2.02 PAGE 4

d. Unravel the linkdge-info and coalesce information and

links where possible. This information will be kept in a

symbol-table~like store, hence coalescence and conversion

(where possible) to intra-segment references will be

automatic.

i.

ii.

Go through all definitions (including.asgpciated
entry-sequence if relevant) extracting the basic
information. Delete the definitions of "symbol_table",

"rél_iext", "rel_link", and "rel_symbol",

Possible errors include:
multiple definition of entry-symbol
(e.g. neM in na$cn "h$eh)

undefined symbol (e.g. binding segment <a> but

. _there is no definition of "a$ch although "a$c"

is referenced).

Pick up each link from the linkage-block and gather
its link-snap~info placing this in an appropriate
structure. The "undefined symbol" error message
mentioned earlier is possiblé here, as is an

r

"out-of-bounds" error -message.

e. Compute base value (i.e. offset in bound~segment's section

of component section's loc zero) for each section. Pay

attention to "O mod 2" restrictions and "O mod 8"

restrictions (if any).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.2.02 PAGE 5

i \

2.

Fix attention on bound-segment (after passing over each

component).

a. Delete definitions specified by user, error-messages if
def not found.

b. Insert additional names for remaining ehtries according
to user specifications; error messages possihlé§

-

c. Act on some user-specified-options.

i. Print out bind-map.
ii. Save partial results and stop binding (in case of
unusual messages or a user-specified "halt" here).
d. * Reassemble linkage-info.
e. Make cénversioﬁfmap.For‘iinkage~blocks. Thus a component's
reference to its linkage-block can be converted to a
refgﬁence to the béund—segmeqt's linkagé-block.

f. Create symbol-section header for bound-segment.

ie Text-size is the size of the entire text-section,
link=-snap-info included.

ii. Link-size is the size of the entirg 1inkage~sectionl
(i.e. header, internal static, linkage-block).

iii. Translator name is "binder";’ |

iv. Next-header points to header for first component;

component-level is set to zero.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.2.02 PAGE 6

C. Relocation pass over components

(fix attention on one component, go through each ego-section).

1. Simple and obvious procedures apply to all hélf—words not
related to linkage-info.

2. Each reference tolthe component's linkage-block is converted
to an intra-segment reference if, possible, othérw{§e it is
converted to a reference‘to the bound-segment's linkége—block.

3. Process the symbol-section header.

a. Increment (by one) the component-level (formerly called
* "binding-indicator™). |
b. . Set the next-header pointer (if it is‘currently zero and
another component follows).
C. Set text-size aﬁd link-size (to reflect ego-section sizes).

L. As this relocation is going on, repack the relocation-information

for eachsection. Note that the values of [rel_link] and

[rel_symbol] are currently unknown.

D, Finalize binding.
1. Set up linkage-header.
a. def-pointer.

b. size of internal-static.

c. size of section.

2. Place linkage-info in the bound-segment.

