
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.2.02 PAGE 1

Identification

The Binding Procedure

G. S. Stoller

Purpose

This document·describes a binder which achieves the goals set forth

in BD. 2. 00.

~lossary

See Glossary 1n BD.2.00 •

. ~estrictive Assumptioo§.

1. In all object segments, the linkage-info appe~rs in the same section

(i.e. always in the text-section or always in the linkage-section).

-~ It may even be assumed that this section is the text-section.
1)

2. All logical-segments gtven as input to the binder are assumed to

,. be in objed.-format.

3. Segments containing gates and doors will not be bound.

4. A "t.rap before 1 ink" occurn ng on a 1 ink between two of the component

segments will not be allowed. When such an occurrence 1s seen,

binding will be terminated.

5. Only the latest EPLBSA entry-sequence, the brnder entry-sequence,

and the PL/1 entry-sequence wi 11 be accepted. All other entry-

sequences are declared unbindable and will be flagged by the binder

when seen. If many instances of other entry~sequences are discovered,

the set of acceptable entry-sequences may be expanded.

MULTI CS SYSTEM-PROORAMMERS' MANUAL SECT I ON BD. 2. 02 PAGE 2

£fficiency Considerations

For reasons of speed it 1 s probahl y best to unpack several units of the
-

relocation-bits at once via EPLBSA code. An array will be prepared

containing the relocation-information for approximately 500 words

(1000 half-words) per call to this EPLBSA-procedure. A similar

-technique will be used for packing relocation-bits.

Simplifying Assumptions
-

1. The linkage-info can be parsed and properly decoded without the

aid of relocation-information.

2. Each definition specifying a place within the'linkage-block that ..
looks like the beginni~g of an entry-sequence is specifying an

entry.

Strategy . '
i '\

Consider the binder to be a transl~tor (thus translator-terms can be

used in this description); as such it is a two-pass translator on the

components (as atoms) of the bound-segment but only a one-pass translator

on the half-words (as atoms) of the bound-segment.

The first pass 1s the standard assembler-type pass of name-definition

and location-counter base-value setting. Post-processing of this pass

consists of producing all of the linkage-info (link-snap-info and

link-block) for the bound-segment by disassembling the components'

linkage-info and reassembling the final collection.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.2.02 PAGE 3

Now the second pass begins. Here the actual relocation is done and
'

all references to a component's linkage-block are converted to

intra -segment refere~ces if possible; otherwise they are converted to

references to the bound-segment's linkage-block. Postprocessing

consists of placing the linkage-info in the bound-segment •

. Detailed strategy is given In the remainder of this section of the MSPM.

A. User-Interface

1. Command-type segment-handling.

2. Initialization of structures and variables directing the

basic binder.

·3. Set user-options.

B. Definitional pass over components.

1. Fix attention on one component.

a. Fro~·fhe symbol-section get ~he text-length and link-length.

Check against values from object-format.

b. Extract information from linkage-section.

1. Extract def-pointer; if defs are in linkage-section

set flag to abort binding.

Il. Set stze of ego-·text-section· In binder-array.

iii. Obtain size of internal-stafic'and place it in binder-

array.

c. Obtain size of ego-symbol-section (it is the offset of

[rel_text] minus the offset of [symbol_table]) and place it

in binder-array.

MUL Tl CS SYSTEM-PROGRAMMERS' MANUAL SECT! ON BD.2.02 PAGE 4.

d. Unravel the linkage-info and coalesce information and

links where possible. This information will be kept in a

symbol-table-like store, hence coalesce~ce and conversion

(where possible) to intra-segment references will be

automat i.e.

1. Go through all definiqons (including a-~~?ciated

entry-seq~ence if relevant) extracting the basic

..

information. Delete the definitions of "symbol_t~ble",

11 rel_text", 11 rel_link", and 11 rel_symbol".

Possible errors include:

multiple definition of.entry-symbol

(e.g. 11 c 11 .in "a$c11 "b$c")

undefined symbol (e.g. binding segment <a> but

; .. :there is no definition of "a$d1 although 11a$c"

is referenced).

11. Pick up each link from the linkage-block and gather

its link-snap-info placing this in an appropriate

structure. The 11 undefi ned symbol" error message

mentioned earlier is ~oss~b~e here, as IS an

"out-of-bounds" error· message.

e. Compute base value (i.e. offset jn bound-segment's section

of component section's loc zero) for each section. Pay

attention to "0 mod 2 11 restrictions and 11 0 mod 811

restrictions (if any).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BD.2.02 PAGE 5 .

I'

2. Fix attention on bound;-segment (after pass1ng over each

component) •

a. Delete definitions specified by user, error-messages if

def not found.

b. Insert additional names· for rema1n1ng entries according

to user specifications; error messages possi~J~.

c. Act on some user-spe;cified-options.

1. Print out bind-map.

11. Save partial results and stop binding (in case of

unusual messages or a user-speci~ied Phalt" here).

d.· Reassemble 1 inkage-info.

e. Make conversion~ap for linkage-blocks. Thus a component's

f.

reference to its linkage-block can be converted to a

ref;<ence to the bound-se~en.t's linkage-block.

Create symbol-section header for bound-segment.

1. Text-size is the size of the entire text-section,

link-snap-info included.

11. Link-size is the size of the e~tire linkage-section

(i.e. header, internaj stati~, linkage-block).
f' t.

Translator name is "binder".

Next-header points to header for first component;

component-level is set to zero.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BD.2.02 PAGE 6

C. Relocation pass over components

I'

D.

.
(fix attention on one component, go through each ego-:-section).

1. Simple and obvious procedures apply to all half-words not

related to linkage-info.

2. Each referen6e to the component's link~ge-block is converted

to an intra-segment reference if. pass i ble, otherw.i se it is

converted to a ref~rence to the bound-segment's linkage-block.
I

3. Process the symbol-section header.

a. Increment (by one) the component-level (formerly called

'"binding-indicator").

b. ?et the next-header pointer (if it is currently zero and

another component follows).

c. Set text-size and link-size (to reflect ego-section sizes).

4. As this relocation Is going on, repack the relocation-information
' ' -· . ~

for each section.
. .

Note that the values of [rel_link] and

[rel_symbol] are currently unknown.

Finalize binding.

1. Set up 1 i nkage-header.

a. def -pointer.

b. SIZe of internal-static .

c. SiZe of section.

2. Place linkage-info In the bou'nd-segment.

