
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.00 PA.GE 1

Identifi5:S1!.iQ!2

Segment Management Module (SMM) - Overview
S. L. Rosenbaum

Published: 04/05/67

In the Multics world of segments, the Segment Management
Module (SMM) is an interface for translating symbolic
call names.i~to segment pointers. (A ~al~_,Q§E!§. is a symbolic
name by. vJh 1cn a process knov·JS a segment, 1. e., a name
by which a procedure or group of procedures within a process
refen;nces a segment. A 2§£!Ds.QL_£.Ol!J.!ex is an ITS pair
po1nt1ng to the base of a segment.) Yhe SlvlfVl is composed

f ... d .• t t' . l ' ' o a group OT a m11ns ·ra 1ve nng s ave proceo.ures ano
is a major interface to the basic file system segment
manipulation mechanisms (BG.3.00). As such, ordinary
user procedures may call the SMM as well as the primary
intended caller, the Linker (80.7.04).

The main function of the SMM is to translate a call name
into a segment pointer for the Linker. To facilitate
the translation, the S~E'-1 records all the 11 narne-into-segm::.nt
pointer 11 translations for a process in a table, the Segment·
Name Table (SNT). Each p:·ocess has its·ovvn SNT. Both
the SMM and the SNT reside in the administrative ring
and hence, serve as a logical bridge between the user
ring's use of symbolic call namzs and the basic file system~s
use of segment pointers. The basic file system resides
in the protected (or hard-core) supervisor ring. (See
Figure I.)

In addition to translating a call name into a segnent
pointer for the Linkl$r, the Sf-~f-1i provides pririlitives for
adding entries to the SNT (normally called by the Linker)~
primitives for removing entries from the SNT and primitiv2s
for obtaining informatio~ about entries in the S~T. Although
all the primitives are available to both system programs
and user programs it is suggested that the prim5.tives
which alter the SNT should be invoked only for handling

• 1 . · · . • . ' . ' • ' . ' L. 1' ,~ spec1a s1tuat1ons# e.g.# Sltuacicns wn1cn tn2 1n~e

does not handle satisfactorily and situations for I:.Jhich
neither library procedures nor commands are 3vai1able.

This section describes the interfaces of the SKM and discussas
the general fE:::atures of 11 initiating", 11 tenniilating 11 and

HUL TICS SYSTEf:l-PR.CGR..Af-'!ff:ERS" f:l.!~NUAL SECTIOI'.] 80.3.00 PJ\GE 2.

"relating 11 call names as provided by the sr-lf·11. Section
80.3.01 d3scribes the structure of the Seg~~nt Name Table
in detail; section 80.3.02 describes the SMM primitives.

The reader should be fami 1 iar \vith section BG.OO - 11 0vervie1,v
of the Basic File System11 and the description of directodes..
path names and entry names which is contained in section
BX.B.OO - 11 0verviev,: of the File System C6mmancls11 •

Def_inition of Terms

An entry in the Segment Name Table (SNT) contains a call
name 1 information about the seoment associated with the
call na~e~ information about t~e relation of the entry
to the current process and information about the availability
of the entry to segm~nts already known to the process.

At this point it is convenient to define some terms which
are used throughout section BD.3.

A call name is knoVllJ. if at least. one entry for
it appears in the SNT.

A call name is initiated if it is a known name
and the info_rrn.;;.tio~laSO'L!t its associated segment
includes a segment pointer.

A call name is terminated if no entry for it in the SNT
is associated vJTfh-asegrn·.:.:~nt pointer, i.e., a terminated
name is a call nama which is not initiated.

/'1. call name is rel_9tes!_ if a specific entry in the SNT
for the call name must be used by a specific segment when
that segment references the call narr;e. For example1 assume
there is an entry vv:1ich translates the cal·! narn::; 11 X 11 into
the segment pointer 11 fl 1 .. If that ::;:ntt'Y is related to
segment 11 n11 (\•Jhe re 11 n1' is the pol ntE::r to the.segrr:ent and
not a call nam;:; for it). then V.Jhenever segr.!ent 11 n11 references
the call nar:~e 11 Xr', segment 11 n!! gets segment 11 i 11 • Loosely ·
speaking·, the call name 11 x1' (and its associated segment
11 i 11) are internal to segment 11 n11 and segr:lent 11 11 11 can get
no s~;:;gment other than segment 11 i'! for the call name l!x''.

A related entry can be local or olcbal. A related entry is
1 1 •.r. • • • • ---oca 1(1t 1s ava1laole to only one seoment- the seament
---- . .:J ;;.;

MUL TICS SY STEr--1- PROGRAfvir'tERS' f·f:,6.NUA L SECTION 80.3.00 PAGE 3

to which the entry is related. A related entry is global
if it is available to any segment seeking the call name.
(All entries which are not related entries are global
entries. That is, they are available to all calling segments.)

11 Relating•• call names to segments enables the use of multiply­
defined call names ltJhich, in turn, decreases the need
to reserve special names for system programs; relating
names also facilitates the use of sub-systems. That is,
the user of a packaged system need not be concerned with
the system's calls conflicting with his own calls if the
packager of the sub-system has established all the necessary
relationships within the sub-system. To aid the packager,
the system command relate (section BX.B.13) enables the
packager to establishTeTationships without re-programming
his sub-system. The Linker automatically establishes
a relationship between a procedure segment and its linkage
section segment ~Ji~h an Sfvir-1 primitive, g~ts_~g. In particular,
when the Linker 1n1tiates a procedure's call name (causes
an entry, i.e., a name-to-segment translation, to be made
in the SNT for the call name of the procedure), the Linker
also directs the SMM to rel~te the call name of the linkage
section to the procedure segment (causes an entry to be
made in the SNT for the call name of the linkage section
which must be used by the procedure seg~ent when it refers
to the linkage section's call name).

Although the implementation of related names and their
use is relatively straightforward, the concept of relationships
is more easily explained by example rather than in the
abstract. Let it suffice for now to say that relationships
enable two segments which reference the same call name
to co-exist within the same process even though they neither
vJant (nor do they get) the same segment for the ca 11 name.
From the Si .. H,1's point of viev'i, this means that the srn
may have several entries for a single call name; of course,
t h<-~ Siv1fv1 may need to knovv \'Jha t segment is refe rene i ng the
call name in order to decide which entry to use for the
call name. Information attached to each entry in the
SNT indicates:

1. if the entry is related and if so to which segment.

2. if the entry is local, i.e., the entry is available only
to one segment (the one to which it'is related), or
if the entry is g19.P,ll.l,, i.e., the entry is available to
all segments see~ing the call name.

MULTICS SYSTEM-P~CGRA~~ERS' MANUAL SECTION BD.3.0C PAGE 4

When a procedure symbolically references an external seg~ent
for the first time, a lin:::age fault occurs. (Section
80.7.00 discusses dynamic linking.) The Linker, the system
module V;Jhich handles linkage faults, calls the Sf,iivJ for
a pointer to the base of the segment associated with the
symbolic call name. The Linker assumes that the SMM can
obtain the pointer an the basis of the symbolic call name
which caused the linkage fault and knowledge about the
faulting procedure, i.e., the identity and location of
the procedure which referenced the segment by call name.
The Linker passes t~e call name (for which a segment pointer
is wanted) and a pointer to the faulting segment (the
procedure segment which wants a segment fot the call name)
to the SMM. The SMM checks the SNT to see if there is
an entry for the call name which is available to the faulting
segment. An entry for a call name is available to a faulting
segment if

1. the entry in the SNT is associated with the ring in
which the faulting segmsnt resides (that is, the entry
\rJas created by a call fror,J the sc:;me ring in li·Jhich the
faulting segment resides) and

2. the entry is local to the faulting segment, i.e., the
entry is directly related to the faulting segment, or
the entry is global.

The above conditions are established for an entry when
the SMM originally creates the entry in the SNT as is
described later in this section. A global entry is used
only if there is no local entry available - either type
of entry must meet the first condition.

The first time that a pt~ocedure in the process references
a call name, the SMM will probably not find any entry
for the call name in the SNT. The SMM must then initiate
JJ1£ .. D£!ile=J:.2I.J?._ s~gl]}~[l.!., i.e., create an entry fot~-the_, ____ _
call name and its associated segment which the faulting
segrnent can use. To accomplish this, the Si·:;jv1 invokes
the Search Module (described in sections 80.4.00 and BX.13.00)
at its entry search. The SMM passes (to the Search Module)
the infonnatio·n~:Ctreceived from the Linketi', i.e., the
symbolic call name and the pointer to the faulting segment.

MUL TICS SY S TEt·i- PROGR.L~J·1f•'!ERS"' f'!ANUli.L SECTION BD.3.00 PkGE 5

The Sf<~UV\ expects the Search fv1odule to return the location
of the desired segment in the file system hierarchy~ i.e. 1

the segment's path ~arne. The Search Module returns the
path narn·e of the directory v.Jhich contains the entry for
the segment and the name of the entry in the directory.
(So if the path name of the directory is''> a> b11 and
the name of the entry is ''x'', then the path name of the
segment is 11)a >b >x11 .) Now the Sf'11i'"1 calls the Directory
Control primitive §._Stblseg, giving ~2tbl_sr::g the segment's
path name and getting back the pointer to the segment.
(The i nterfa.ce bet\,-Jeen the Sf1l~·1 and es tb 1 S§Sl is more fu 11 y
described later in this section.) -·--

NO\\' with both ends of the entry and the bridge betv.Jeen
the extremities~ i.e. 1 the call name from the Linker,
the segment pointer from the Directory Control and the
segment's path name from the Search Module, the SMM takes
the follovving steps to establish the availability of the
entry.

1. The SMM gets the ring number of the faulting segment
and makes the entry available to the ring in \'\/hich
the faulting segment resides.
(NOTE: the s~·1n is responsible for the availability
of the SNT entry to the faulting segmentr the basic
file system (Access Control) is responsible for the
availability of the segment associated with the SNT
entry to the faulting segment.)

2. The SMtvl makes the entry g 1 oba 1.

Finally, the SMM updates the SNT to include the entry and
then returns the segment pointer to the Linker.

On subsequent calls to the SMM (for that same call name
~· \tJanted by segments faulting in the ring to \,vhich the
entry is available), the SMM finds that the name is initiated
and available and simply returns the segment pointer to
the Linker.

If the Linker chooses to, it can ask the SMM for two segment
pointers: one to the procedure segment and one to the
linkage section segment. In this case, the St·1iv1 proceeds
as above but takes the follm~Jing steps after having found
or made an initiated entry for the procedure segment and
its call name.

HU L TICS S Y S T Ei-1- F'ROG ::<,C,Ji)-1 E R S ' 1'\.i"\I'.!!J/-\ L SECTIO:~ 80.3.00 P.L\GE 6

1. The Sfi\fv'\ checks the S~H to see if there is an entry
related to the procedure segment for the linkage section
segment with the same ring of availability as the entry
for the procedure segment. In addition the call name
for the entry is cornprised of the £.!2_tr~~~~- of the.
procedure segment concatenated with a character str1ng
(normally 11 .1 ink") supplied by the Linker. If the Sf'\f/l
finds such an entry it goes immediately to step 6 bel011J.

2. If there is no such entry~ the S/-'ii\l calls e2tblseq vvith
the directory path name of the procedure segment and the
call name of the 1 ink~:ge section. (For example, if the
Linker· vvants segment pointers for the call name 11 X11 and
its 1 inkage section ·· and the segment for 11 X 11 has the
path name 11 >a)b 11 , then the 1 inkage section has the
path name 11)a >b. 1 ink11 .)

3. The Sr-'\H makes a copy of the linkage section segment and
puts the copy in the Process Directory and calls
makeunknown in Directory Control to release the original
1Tnka~~e---sec:tion segment. (The Linker operates on copies
of 1 inkage sections and not the original.) '1r11aking a copy 11

consists of calling Directory Control's 9..Efl_endb to make
a branch in th~ Process Directory for the ne1.v segment,
calling ~stb~:g_ to get the segment pointer for this nevJ

t ' . 'h .. , t.. • ~ _,, segmen ana copyrng t e or1g1na, segment lnto cne new
segrnent.

4. Having all the pieces for the entry for the linkage
section segment, the S~M relates the new entry to the

' t- ' I • ' 1 ' 1 proceoure segmen~ ana ma~es lt g ooa •

5. The 5~4 updates the SNT.

6. The SMM returns both the pointer to the procedure seg~ent
and the pointer to the linkage section segment to the
Linker.

\r!hen a user v.rants to ensure that a procedure uses a specific
sub-procedure reaardless of the process in which it is
r-unning, the uset:: (or packager) can 11 relate11 names with

IViULTICS SYSTHI-PROGRAHIJit:RS' FiANUAL SECTION 80.3.00 PAGE 7

the relate command (section BX.8.13). To understand hov.J
the sPJ"I handles these relationships, a brief discussion
of the relate command and its immediate effects seems
pertinent here.

The relate command expects its caller (the P?Ckager) to
supply information about the desired relationship for
the procedure. The cqmmand puts the information into
the file system hierarchy for the SMM to use when the
procedure is actually invoked in a process - lfl. any __ E..!:.,Qf~
Qy_ any user:.

To be more explicit, the packager supplies the call name
of the procedure segment and its location in the hierarchy
(its path name), the call names of all its sub-procedure
and/or data segments to be related and directions to be
used by the S~~r'1 to get the related s_egments tvhen they
are needed by the procedure segment. The packager can
indicate that the segment for a related name should be
created, is located in the hierarchy by a specific path
name and/or can be searched for. In addition, the packager
can indicate vvhether a related call name should be initiated
or should simply be made known at the time its caller
(the procedure segment) is initiated.

The relate corr~and creates a segment in· the file system
hierarchy \'Jith all the relationship information supplied
by the packager; this created segment is called a r~?.tion~J)l.f2
segment and its location in the hierarchy is determined
by the packager \"Jhen he invokes the relate command. In
norma 1 use, the packager VJi 11 probablY te 11 users of the
package about the location (path name) of the relationship
segment and mention neither the path name of the procedure
segment nor the path names of the procedure's related
segments.

(Note: IJJith the relats:_ command, the packager relates
call names to entry names and not to segment pointers.
This is necessary since a segment pointer is not assigned
to a segment until the segment is part of a process and

·then only has meaning within the scope of the process.)

lb§_2M~~ 's Use of Re 1 a!£.2..1!9mes

In the course of obtaininq a segment pointer for the Linker,
the SMM reaches the stage where it has a path·p~me for

1'1UL TICS SYSTEr-'1-PROGRAff:f' .. 1ERS' H/\NU.L\L SECTION 80.3.00 PAGE 8

the segment and vvants estb~ to return the segment pointer.
If estblseg_ indicates that the· segment is a relationship
segmennfhe relate command sets this vital piece of ne~vs
in the form ora s\"Jitch attached to the branch in the
hierarchy "'Jhen the com;·nand creates a re 1 at ionshi p segment),
then the SMM must expend a little more effort to obtain
the segment pointer vvanted by the Linker. Basically,
the SMM breaks the relationship segment down and makes
all the related names ·known (following the directions
specified in the relationship seg·r:t::nt) in addition to
initiating the procedure via §..?!~Jl2_~. ~Remember- the
path name of the procedure segment was g1ven to the relate
command.and stored in the relationship segment.) The­
SMM puts the instructions for getting the segments for
the related names 11'Jith their respective knovJn entries .
and then. frees the relationship segment by calling makeunl~~.Q..
The entr1es for the related names have the same ring of
availability as the entry for the procedure segment to
which they are available.
Now when the SMM is invoked to get a segment pointer and
the SMM finds an entry in the SNT for a related name which
meets all the requirements (name, ring, and caller), the
SMM uses the information associated with the known entry
to get the segment pointer. The information may direct
the SMM to create a new segment, to use a sp8cific segment
already in the file system hierarchy and/or to search
in the file system hierarchy for a seg~ent.

To create a new segment for the call name, the SMM calls
Directory Control's primitive aopendb to create a new
entry in a directory vvhich exists--in the file system hierarchy.
(Besides indicating that the St~i'-1 should create a segment,
the information stored with the known entry specifies
by path name the directory into which the new entry should
be put and the name for the entry.) The SMM obtains the
segment pointer for the new segment by calling Directory
Control at estbls~. The S~11•1 updates the SNT so that ·
the name is1nfi1ated and then returns the seoment pointer
to the Linker. ~

When the information indicates that a specific segment
in the file system hierarchy should be associated with
the call name, the SMM immediately calls estblseq to obtain

--~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.00 PAGE 9

the segment pointer. The Sr11H locates the desired segment
in the hierarchy by the path name specified by the information
stored with the known entry. If there is no segment with
the given path name (estblse'l generates an error) and
searching is requested - or if the information associated
with the calling name initially directed the SMM to search
- the SMM invokes the Search Module as previously discussed.
Obtaining the desired segment pointer in one way or the
other, the St"11V1 records the initiation in the SNT and returns
the segment pointer to the Linker. (See figure III.)

The SMM ~erminates an entry by deleting it from the SNT.

When a segment is no longer needed (its segment pointer
is not associated with any call name), the SMM invokes
Segment Cant ro 1 's primitive J:.l:@}S§uni~.!J.. If this segment's
delete switch in the SNT is on, the SMM also calls Directory
Control's primitive delentrv. (Calls to the SMM primi~ive
setdel change the setiTngof the delete svJitch; initially,
the SMM sets a segment's delete switch off.) The call
to 9~.l~.D..t!:Y. removes the segment from the fi 'le system hierarchy.
If the segment has entries related to it, the SMM terminates
all local entries and removes all the related information
from the global entries, i.e., terminates all local related
entries and unrelates all global related entries.

Primitives

The SMM's primitives are all unprivileged and designed
for use by both system programs and the general user.
These primitives perform two functions: they alter the
SNT and they retrieve information from the SNT. (Relationships
are internally established by a process for itself with
the sr"ii'l primitive 2etraD:!s~?.!..?....:~!.J s; re 1 at ion ships are es tab 1 i shed
externally by a process for itself and other processes
\'Jith the command rela!£ descr-ibed in section 8><.8.13.)

Specific error conditions a11d error codes an:; described
in section 80.3.02 along with the primitives. The SMM
uses the standard error handling mechanism described in
Section BY.11.00.

SECTION 80.3.00 PAGE 10

1
;:::edure I ~~~~
. t ---------- -------------------------J------ .. -------------------------------f-----------

l:er - Fs.=-l
L ', ~L::_J

8
Administrative
Ring

["• .

m:nt]
trol

•,.~ :";...:.·::;...,_;;,,_ __ , _r.

Directory
Control

Hard-core
Supervisor

v ----------------·------------'----·---·-_.;; ________ . --

Figure I -The Seomant Manaoement·Module's -' _, Interfaces

tJiUL TICS SYSTEivi- PROGRAHHERS' H/>.NUAL SECTION 80.3.00 PAGE 11

call name., ring

~------------ -~---------------------------·-----1
information about hovv to get segment

create?
path name?

search?

!s..QQ~ and terminated name

~------~-------------------------------·-----
call name, ring
segment pointer

information about how to get segment
create?

path name?
search?

~-----------------~-----------------------------~
.knok£.0. and initiated name

--------·--------~--· ----·~---

ca 11 name, · ring
segment pointer

~----------------~-------------------------~---=4~---
information about how to get segment

create?
path name?

search?

segment pointer of related segment
availability of entry- to all?

only to related segment?

!5,.Q01t{!l, in it i a ted and related name

Figure II - Representation of various types of entries
in the Segment Name Table (Sf,lT)

yes

~~ULT IC S SY S TEi'11- PROGRAHf·iERS' /Vi,L\NUtx L SECTION 80.3.00 PAGE 12

Figure I II - Obtaining a segment pointer for the call name 11 x11 •

return
with
segment
pointer

create

segment

error

yes
<1-------<

yes

no

seaTch

l for
t__:ath n~~

------· --~t:::_t_e }!---y-e~_s_;._.· <

t
return with
segment pointer

·> error .

fvlUL TICS SYS Tfi'-1- PROGR.L~J-:fc1ERS' f'li,i~f'-!UAL. SECTIO~ BD.3.DO PAGE 13

return

Figure IV- Terminating a call name

remove
yes,. J-:r;-:e~l:.:a-:t::i;.:.o-:n:s:h::;i~--­

>-----: · delete en tries

remove seg­
ment from
file system
hierarchy

local to
this segment

yes

--....-.make segment · 1<::1---'
unknown, i.e.

~-------;delete Segmena
Header
the -~

[
del. ete ---.] entry
from
SNT

T
return

no

