ST MAMUAL SECTI

Identification

Segment Management Module (SMM) - COverview
S. L. Rosenbaum

In the Multics world of segmeni?
Module (SMM) is an interfa

call names into segment pointers, (A cal]wuljg is a symbolic
name by.which a process knows a sesgment, i.e.,, a name

by which a procedure or group of procedures within a process
references a segment., A segment pointer is an ITS pair
pointing to the “base of a segment,) The SMM is composed

of a group of admin 1strutlve r1n0 slave procedures and

is a maJo. interface to the basic file systen segment
manipuliation mechanisms (BG.3. UO), Ls such, ofdlnory

user brocedures may call the Su” as well as the primary
intended caller, the Linker (BD.7.0L),

s, the Segment Management
r translating syv“o11

The main function of the SMM is to translate a ca

into a segment pointer for the Linker, To facilitate

the translation, the SMM records all the ''name-into-segment
pointer" translations for a process in a table, the Segment
Name Table (SNT). Each process has its own SNT, Both

the SMM and the SNT reside in the administrative ring

and hence, serve as a lcgical bridgs batween the user

ring’s use of symbolic ¢all namzs and the basic file system’s
use of segment pointbrs The basic file system i ¢

in the protected (or hard-core) supervisor ring, (See

Figure I.)

In addition to translating a call name into a sagment

pointer for the Linker, the SM¥ provides primitives for
adding entries to the SHNT (nnrmallv called by the Linker),
primitivos for removing entries from thz SNT and primiti%as
for oatalnlng information about entries in the SNT. Altheugh
all the primitives are available to both svystem DrONrr“s

and user programs it is suggested tha 't the primitives

[@IRY)]

which alter the SNT should be invoked only for handling
special situations, e,g., situaticns which the Linker
does not handle satisfactori ly and situations for which
neither library procedures nor commands are available,

This szction describes the interfaces of the SMM and discusszs
the general Teatures of "initiating", "terminating" and

MULTICS SYSTEM=-PRCGRAMAERS” MANUAL SECTION BD,3.00 PAGE

"relating" call names as provide
BD.3.01 dzscribes thz structure
in detail; section BD,3,02 descr

The reader sheuld be familiar with section 36,00 - "Cverview
of the Basic File System" ard the description of GlFLCLO"DS,
path names and entry names which is containad in section
BX.8,00 - "Overview of the File System Commands',

Definition of Terms

An entry in the Segment MName Table (SHT) contains a call
name, information about the segment associated with the

call name, information about tha relaticn of the entry

to the current precess and infermation about the avallability
of the entry to segnents already known to the process, '

At this point it is convenient to define scme terms which
are used throughout section BD.3.
A call name is mx-w
it appears in ths

et least one entry for

A call nams
and the i

A call nama
is associa

name is a Ca -h

A call name is related if a specific entry in tha SNT
for the call name rust be used by a specific segment when
tht segment references the call narme, For G\QMpl , assume

there is an entry which transiates the call namnz "x" into
the segment pointer "i", If that entry is relatad to
segme Nt 'nt (where "'n' is the pointer to the chn»n‘ and
not a call nama for it), then whenever segment "n' references
the call name "X, segmant "n" gets segment "i", Loosely '
speaking, thz call nams '"x" (Jﬂu its associated segmant
i) are internal to segment "n'" and segment "n' can get
no segrment other than szament "i% for the call name "X,

A related entry can be local or glcobal, A related entry
local if it is available to only onz segment - the seguen

MULTICS SYSTEM-PRCGRAMMERS® MANUAL - SECTICN BD,3,00 PAGE 3

to which the entry is related, A related entry is global

if it is available to any segment seeking the call name,

(A11 entries which are not related entries are global

entries., That is, they are available to all calling segments,)

"Relating" call names to segments enables thz use of multiply-
defined call names which, in turn, decreases the need

to reserve special names for system programs; relating

names also facilitates the use of sub-systems, That is,

the user of a packaged system need not be concerned with

the system’s calls con111Ct1nq with his own calls if the
packager of the sub-system has established all the necessary
relationships within the sub-system, To aid the packager,
the system command relate (section BX,8,13) enables the
packager to establish relationships WthOUt re~programming
his sub-system, The Linker automatically establishes

a relationship between a procedure segment and its linkage
section segment wzth an SMM primitive, getseg. In particular
when the Linker initiates a procedure’s Teall name (causes
an entry, i,e,, a name-to-segment translation, to be made

in the SNT for the call name of the procedurz), the lLinker
also directs the SMM to relate the call name of the linkage
section to the procedure segment (causes an entry to be
made in the SNT for the call name of the 1inkage section
which must be used by the procedure segment when it refers
to the linkage section®s call name),

Although the implementation of related names and their

use is relatively straightforward, the concept of relationships
is more easily explained by examu]; rather than in the
abstract, Let it suffice for now to say that relationships
enable two segments which reference the same call namz

to co-exist within the same process even though they neither
want (nor do they get) the same segment for the call name,
From the SKMM7s point of view, this means that the SNT

may have several entries for "a single call name; of course,
the SMM may need to know what segment is rcrsrcnc1ng the
call name in order to decids which entry to use for the

call name, Information attached to each entry in the

SNT indicates:

1. if the entry is related and if so to which segment,

2, if the entry is local, i.,e.,
to one segment (the one to wi
if the entry is global, i.e.,
all segments seeking The call name,

the entry is availat
xcw it 1< rela ced) or
ailabl

m
—
oz
®
®
3
ctr
\<'
e
)
QJ
<
C,

—

AULTICS SYSTEM-PROGRAMMERS? MANUAL SECTION BD)0 PAGE

Cbtaining Seament Pointers for the Linksr

When a procedurc syirtbolically references an external segment
for the first time, a linkage fault occurs, (Section

BD.7.00 discusses dynamic linking,) The Linker, the system
module which handles linkage faults, calls the SMM for

a pointer to the base of the segment associated vith the
symbolic call name, The Linker assumas that the SMM can
obtain thes pointer on the basis of the symbolic ca]] nama -
which caused the linkage fault and knowledge about the
faulting procedure, i,e., the identity and locaticn of

the procedure which eferenced the segment by call name,

The Linker passes the call name (for which a segment pointer
is wanted) and a pointer to the Cath)rg segment (the
procedure segment which wants a segment for the call name)

to the SMM, The SMM checks the SNT to see if there is

an entry for the call name which is available to the faulting
segment. An entry for a call name is available to a faulting
segmznt if

/\

1. the entry in the SNT is associated with the ring in
which the xau]tlng segment resides (that is, the entry
was created by a call from the same ring in which the

faulting segment resides) and

, the

2. the entry is local to the faulting segment,
: nt, or

i,
entry is directly related to the faulting segm
the entry is global,

e,
an

The above conditions are established for an entry when
the SMM originally creates the entry in the SNT as is
described later in this section, A global entry is used
only if there is no local entry available - either type
of entry must meet the first condition,

The first time that a procedure in the process references

a call name, the SMM will probably not find any entry

for the call name in the SNT. The SMM ﬂust then initiate

tha nams for a seament, 1 e., create an entry for the

call name and its assoc ed segment which the fauluwrg
segment can use, To acronp‘ish this, the SMM invokes

the Search Module (iescribad in sectlons BD.L.00 and BX,13.00)
at its entry search. The SMM passes (to the Search Module)
the information it received from the Linker, i,e,, the
symbolic call name and the pointer te the faulting segment.

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BD,3.00 PAGE 5

The SMM expects the Search Module to return the location
of the desired segmant in the file system hierarchy, i.e.,
the segment’s path name., The Search Module returns the
path namz of the directory which contains the entry for
the segment and the name of the entry in the directory.
(So if the path namz of the directory is '"> a > b'" and
the name of the entry is "x", then the path name of the
segment is '">a >b >x".,) Now the SMM calls the Directory
Control primitive estblseq, giving estblseg the segment’s
path name and getting back the pointer to the segment,
(The interface betwzen the SHMM and esiblseg is more fully
describad later in this secticn.)

Now with both ends of the entry and the bridge between
the extremities, i,e., the call name from the Linker,

the segment pointer from the Directory Control and the
segment “s path name from the Search Module, the SMM takes
the following steps to establish the availability of the
entry,

1. The SMM gets the ring number of the faulting segment

and makes the entry available to the ring in which
the faulting segment resides,
(NOTE: the SMH is responsible for the availability
of the SNT entry to the faulting segment; the basic
file system (Access Control) is responsible for the
availability of the segment associated with the SNT
entry to the faulting segment,)

2. The SMM makes the entry global,

Finally, the SMM updates the SNT to include the entry and
then returns the segment pointer to the Linker,

Cn subsequent calls to the SMM (for that same call name

- wanted by segments faulting in the ring to which the

entry is available), the SMM finds that the name is initiated
and available and simply returns the segment pointer to

the Linker,

If the Linker chooses to, it can ask the SMM for two segment
pointers: one to the precedure segment and one to the
linkage section segment, In this case, the SMM proceeds

as above but takes the following steps after having found
or made an initiated entry for the procedure segment and

its call name, _

MULTICS SYSTEM=-FROGRAMMERS? MANUAL

%
rm
O
—f
Y—i
O
=
o
s
W
=)
o

)
%
™
o)

1. The SMM checks the SNT to see if there is an entry
related to the procedure segment for the linkage section
segment with the same ring of availability as the entry
for the procedure segment, In addition the call name
for the entry is comprised of the entrvy names of the
procedure segment concatenated with a character string
(normally ", 1ink") supplied by the Linker, If the SMM
finds such an entry it goes immediately to step € below,

2. If there is no such entry, the SMM calls estblsea with
the directory path name of the procedure segment and the
call name of the linkage s ~”t1on (For example, if the
Linker wants segment pointers for the cali name "X" and
its linkage section - and the segment for "x'" has the
path name ">a >b", then the linkage section has the
path name “>a >b,.link",)

3. The SMHM makes a copy of the linkage section segment and
puts the copy in the Process Directory and calls
makeunknown in Dlrbctory Control to release the origina
Tinkage saction segment (The Linker opevr a*e: on copie
of linkage sections and not the orlg*nal) '"Making a copy"
consists of call1ng Directory Controi’s auhondo to make
a branch in th2 Process D1recuory for the new segment,
calling estblsag to get the segment pointer for this new
segment and gopy1ng the original segment into the new
SeOant

p—

(I)

L, Having all the pieces for the entry for the]1nk<ge
section segment, the SMM relates the new entry to t
procedure segment and makes it global,

he

5. The SMM updates the SNT,
6. The SMM returns both the pointer to the prccedure segment
and the pointer to the linkage section segment to the

Linker,

~

Related Call Nemes

When a user wants to ensure that a procedure uses a specific
sub-~procecure regardless of the process in Wh1c% 1t is
running, the user (or packager) can "relate'" names with

MULTICS SYSTEM-PROGRAMMZIRS ™ MANUAL SECTION BD.3.00 PAGE 7

the relate command (section BX.8,13)., To understand how
the SMM handles these re]aLwonsh1p= a brief discussion
of the relate command and its immediate effects seems
pertinent here.

The relate command expects its caller (the p@ckager) to
supply information about the desired re]at1owsn1p for

the procedure, The command puts the information into

the file system hierarchy for the SMM to use when the
procedure is actually invoked in a process - in any process
by any user,

To be more explicit, the packager supplies the call name

of the procedure segment and its location in the hierarchy
(its path name), the call names of all its sub-procedure
and/or data segments to be related and directions to be
used by the SMY to get the related segments when they

are needed by the procedure segment., The packager can
indicate that the segment for a related name should be
created, is located in the hierarchy by a specific path
name and/or can be searched for, In addition, the packager
can indicate whether a related call name should be initiated
or should simply be made known at the time its caller

(the procedure segment) is initiated,

The relate command creates a segmant in the file system
hierarchy with all the relationship information supplied

by the packag;r; this created segment is called a relationship
seament and its location in the hierarchy is determined

by the packager when he invokes the relate command, In

normal use, the packager will probably teil users of the
package about the location (path name) of the relationship
segmant and mention neither the path name cof the procedure
segment nor the path names of the procedure’s related
segments,

(Note: With the relate command, the packager relates
call names to eniry names and not to segment pointers,
This is necessary since a segment pointer is not assigned
to a segment until the segnme Nt is part of a process and
“then only has meaning within the scope of the process,)

The SMM“s Use of Related Names

In the course of obtaining a segment pointer for the Linker,

T
the SMM reaches the stage where it has a path hame for

MULTICS SYSTEM~PROGRAMMERS © MANUAL SECTION BD,3,00 PAGE 8

the segment and wants estblseg to return the segment pointer,
If estblseq indicates that the segment is a relationship
segment (the relate command sets this vital piece of news
in the form of a switch attached to the branch in the
hierarchy when the comnand creates a relationship segment),
then the SMM must expend a little more effort to obtain
the segment pointer wanted by the Linker., Basically,

the SMM breaks the relationship segment down and makes

all the related names known (following the directions
specified in the relationsnip segmznt) in addition to
initiating the procedure via estblseg. (Remember - the
path name of the procedure segment was given to the relate
command .and stored in the relationship segment.) The

SMM puts the instructions for getting the segments for

the related names with their respective known entries

and then frees the relationship segment by calling makeunknown.
The entries for the related names have the same ring of
availability as the entry for the procedure segment to
which they are available,

Now when the SMM is invoked to get a segment pointer and
the SMM finds an entry in the SNT for a related name which
meets all the requirements (name, ring, and caller), the
SMM uses the information associated with the known entry
to get the segment pointer, The information may direct
the SMM to create a new segment, to use a specific segment
already in the file system hierarchy and/or to search

in the file system hierarchy for a segment,

To create a new segment for the call name, the SMM calls
Directory Control’s primitive appendb to create a new
entry in a directory which exists in the file system hierarchy,
(Besides indicating that the SMM should create a segment,
the information stored with the known entry specifies

by path name the directory into which the new entry should
be put and the name for the entry,) The SMM obtains the
segment pointer for the new segment by calling Directory
Control at estblseg. The SMM updates the SNT so that
the name is initiated and then returns the segment pointer
to the Linker,

When the information indicates that a specific segmant

]

in the file system hierarchy should be associated with

S ey

MULTICS SYSTEM=~PROGRAMMERS® MANUAL SECTION BD.3,00 PAGE 9

the segment pointer. The SMM locates the desired segment

in the hierarchy by the path name spec1f1eo by the information
stored with the known entry. If there is no segment with

the given path name (estblseq generates an error) and
searching is requested - or if the information associated
with the calling name initially directed the SMi4 to search

- the SMM invokes the Search Module as previously discussed,
Obtaining the desired segment pointer in one way or the

other, the SMM records the initiation in the SNT and returns
the segment pointer to the Linker., (See figure I11I,)

The SMM terminates an entry by deleting it from the SNT,

When a segment is no longer needed (its segment pointer

is not assoc1ated with any call name), the SMM invokes
Segment Control”s primitive makeunknown, I1f this segment’s
delete sw1tch in the SNT is on, the SMM also calis Directory
Control“’s primitive delentry. (Calls to the SMM primitive
setdel change the seLtlnq of the delete switch; initially,
the SMM sets a segment’s delete switch off,) The call

to delentry removes the segment from the file system hierarchy,
If the segment has entries related to it, the SMM terminates
all local entries and removes all the related information
from the global entries, i.e., terminates all local related
entries and unrelates all global related entries,

Primitives

The SMM”s primitives are all unprivileged and designed
for use by both system programs and the general user,
These primitives pe rform two functions: they alter the
SNT and they retrieve information from the SNT. (Relationships
are internally established by a process for itself with
the SMM pr1m1t1ve setnamc;taxus relationships are established
externally by a process for it Tself and other processes
with the command relate described in section BX.8.13.)

Specific error conditions and error codes are described
in section BD.3.02 along with the prlmltlvos The SMM
uses the standard error handling mechanism described in
Section BY,11,00,

MULTICS SYSTEM-PROGRAMMERS T MAMUAL SECTION BD.3,C0 PAGE 10

R W]

user User
procedure Ring

M g g L e el R e e R R

‘/‘ [}
Segment S h Administrati
Linker = Management - Mézrie R.mlnls rative
Module cdu ne
SNT
! e
V
/5 A

Segment Directory Hard-core
Control Control Supervisor

~

Figure 1 - The Segment Managzment Module’s Interfaces

MULTICS SYSTEM=PRCGRAMMERS” MANUAL SECTION BD,2,00 PAGE

call name, ring

information about how to get segment
Create?
path name?
search?

known and terminated name

call name, ring
segment pointer

information about how to get segment
Create?
path name?
search?

known and initiated name

call name, ring
segment pointer

information about how to get segment
create?
path namne?
search?

segment pointer of related segment
availability of entry -~ to all?
only to related segment?

known, initiated and related name

MULTICS SYSTEM-PROGRAMMERS” MANUAL

Figure 111 - Obtaining a segment pointer for the call name "'x",

return yes

no

is
thl

with <<
segment
pointer

create | .4

initiated

initiate

segment

| yes got

segment
' ?

.

yes

v

search

///ﬁégrching
1

allowed

no

error

A\

for
path name

update 1 yes got

no

3 SNT [-

o
W

segment -

e

v
return with
segment pointer

SECTION BD.3.00 PAGE 12

make
entry
local

return

o~

SECTICN BD

igure IV - Terminating a call name

is
name
related

remove
relationships

delete entdes
local to
this segment

remove Seg-
ment from
file system
hierarchy

yes

delete
entry
from
SNT

return

elete

L I=imake segment }

unknown, i.e,.
delete Segment
Header from
the SNT

zZ NN -
. 3.,.00 PAGH

S egmen

switch
on

