
/

,r--.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.04 PAGE 1

Published: 11/17/67
(Supersedes: BD.7.04, 04/27/67)

Identification

Link_fault
D. L. Boyd, D. H. Johnson

Purpose

The link_fault procedure establishes intersegment references.
It is designed to accomplish this in two different situations.
First, whenever an initial external ref¢rence is made
during the execution of a process, link_fautt is called
by the Fault Interceptor Module (FIM) (BK.3.03) to complete
the link. Secondly, link_fault is able to force a link
to be $et (completed) when called as a library procedure
for forcing links (BY.13.01).

Introduction

Link-fault exists in the administrative ring of Multics.
It has two entry points, .f1!!! and force.

The fim entry is accessed by the following method. When ·
a process is executing, all external references go indirectly
through the linkage section of a segment (BD.7.01). The
first time an external reference is made, a Fault Tag 2
(ft2 or sometimes fi) modifier in the linkage section
is recognized by the GE645 hardware during address modification.
This causes a fault which executes a pair of instructions
in the fault vector locations for ft2 faults. The FIM
is entered which in turn calls the link_fault procedure
at entry flm. Link_fault changes the fault to an ITS
or an ITB pair which points to the desired reference.
Control is returned to the FIM which returns to the faulting
procedure and execution of the external reference is then
completed. ·

The link_fault entry for forcing link~ is force, It works
essentially the same within link_fault as the fl!!:! entry
except for the differences described in Usa~e. Link_fault
first checks if the lin~ is already set. I it is, link_fault
does nothing and returns. After the link has been set,
control is returned to the calling procedure.

Usage

There are two entries to link_fault. The call to entry
fim is:

link_faultgfim(machcond, code)

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BD. 7.04

del machcond (0:22) bit(36), code fixed bin(35);

The arguments are:

PAGE 2

1. machcond bases, registers, and scu data at
the time of the linkage fault.

2. code error code returned by link_fault.

The call to force a link is:

link_fault~force (pointlp, option, bases)~

del pointlp ptr, option fixed bin(17), bases (8) bit (36)J

The arguments are:

1. pointlp

2. option

3. bases

pointer to link which is to be
forced
if = 0, ignore trap before link
if = 1, allow trap before link
bases to use for ITB type link

Link.,Jau 1 t$fim assumes that a fault occurred in a 1i nkag~
sectlon. It uses the store control unit data (scu, machine
conditions) found in argument one, machcond, to determin~
the link pair. Link_f~ult~force uses pointlp, the first .
argument, to determine the link pair. Link_fault then
looks through the linkage section pointers for the des~gnated
unlinked reference. Linking may temporarily be hal ted ·
if a trap (call) before link or definition has been requested.
(Note exception in next paragraph.) A trap before link
means that the construction of the link is suspended while
another procedure is executed. A trap before definition
means that use of the definition is suspended while another
procedure is executed. Link fault ultimately constructs
either an ITS or an ITB pair-in the link word pair. In
the case of an entry at fim it modifies the machine conditions
so that the fault will not occur ~gain when the machine
is restored to its state before the fault.

When 11 nk_fau 1 t$ force 1 s ca 1 1 ed, there is an opt ion as
speci.fied by argument t\'\10. The option is desi~ned to·
regulate the use of the trap before link facil1ty. If
the argument equals 1, a trap before link is allowed.·
If the argument equals 0, a request to trap before link
is ignored. The user must be cautious about allowing
traps in this case. As an example, if link_fault, due
to a trap before 1 ink calls out to another procedure which
in turn calls link_fault$force to set the link that was
left waiting by the original trap, an infinite 1oop wi 11
have been created.

/

fv':ULT!CS SYS.,..EM-PROGRAMMERS' fv\ANUAL SECTION 80.7.,04 PAGE 3

I~ calls to entry fim, traps before link and definition
are always allowed. In calls to entry force, traps before
definition are always allowed.

The third argument for the entry force, bases, contains
tt;le base register information necessary for an ITB external
reference. This argument is ignored if the reference
is not an ITB. If the bases are needed and they are Z€ro
or not given, it is one of the errors described below.

Whenever link fault executes a trap before link or definition
r¢ques t, an argument 1i s t is inc 1 uded in the ca 11 to the
trap procedure. Both kinds of traps have the first two
a~guments described below. A third argument needed for
a 1 trap before definition is also described.

A pointer to the users argument 1 ist, if there is one,
is passed as the first argument of the call to the trap
p~ocedure. Otherwise, a pointer to zero is given as the
argument list count.

If a trap before link or definition request is executed
when link_fault is entered at entry fim, a pointer to
the scu data is passed as the second argument of the call
tQ the trap procedure. The scu data is argument one,
machcond. The scu data is subdivided in the following
onder:

user bases (words 0 through 7)

user registers (words 8 through 15)

machine conditions at time of fault (words 16 through 22)

If a trap before link or definition request is execu.ted
when the force entry is used, the scu data is not known.
I f 1 there are any bases known, a pointer to them is used
in1stead. If the bases are not known, a null pointer is
used. When the trap before definition request is executed,
a !third argument is included in the call to the trap procedure,
a flag bit. On returning from the definition trap, ~f
th~ flag bit equals zero, the trap pointer is left unchanged.
1 f the flag bit equa 1 s one, the abi H ty to trap at the .
definition trap just executed is removed. If the flag ·
bit is not set by the called procedure, link fau 1 t sets
it equal to one and proceeds as above. -

Link fault makes calls to the procedure Jetseq in the
Segment Management Module (SIVM) (80.3.02 • G,etseg makes
av.j:li lable, if possible, the segment number of the procedure

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.04 PAGE 4

segment that is being referenced as well as the segment
number of its linkage section. If the SMM returns any
errors. 1 i nk_fau 1 t notes an error as described be 1 ow.

All calls to link_fault at entry fim are assumed to be
correct and no checking is done. -when link_fault is called
at entry force, a check is made of the arguments given.
The argument ring validating procedure, validate_arg (80.9.03),
is called to see if the procedure calling link_fault is
allONed to reference the segment containing the link to
be forced as well as the segment containing the bases,
if given.

When an error is detected, and link fault was called at
entry force, seterr (BY .11.01) is called to put identifyina
information in <error out>. The condl tion "1 ink fault err•'~"
is then signaled. If-1 ink_fault was called at entry fTm,
a return is made to the FIM with the appropriate error
code. The following errors are detected:

Error NuroPer

1 1

12

13

14

15

21

22

31

41

Meaning

Tried to trap before link or
definition with call pointer
equal to o.
Illegal external reference type
code.

Fault occurred in a linkage section
with no link definitions.

External symbol definition not
found in linkage section •

Segment not found.

The second argument option, in
the call to [force] was undefined.

Bases needed and not supplied
or incorrect in call to entry [force].

Link not set. Illegal ring access
involved in arguments of call to
(force].

The scu data (machine conditions)
were not valid.

