
..
•.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BD.7.05 PAGE 1

Published: 02/05/68

Identification

Combined Linkage Segments
R. C. Daley, M. A. Padlipsky

Purpose

The one segment/one linkage segment approach implied by
the foregoing BD.7 sections is modified in actual practice,
for in a paged environment separate linkage se~ments resu 1 t
in large losses of core space due to "breakage' (i.e.,
space left over in a page because segment size need not
fill an integral number of pages). Further, separate
linkage segments necessitate space expenditures in terms
of page tables and descriptor segment entries. To prevent
such inefficiencies, Multics will, in general, combine,
on a per-protection-ring basis, the linkage segments of
the various segments in a given protection ring, into
a single, combined linkage segment. (Note that combining
is performed only for segments strictly within a protection
ringJ segments which contain protection mechanism "gates"
must have their linkage segments handled differently.
See the discussions of gates in sections BD.9 and BG.9.)

Discussion

For a combined linkage segment to be usable without introducing
severe inefficiences of time spent in searching it, as
well as to avoid potential naming conflicts, the origins
of the constituent linkage segments must remain known.
Therefore, whenever a particular linkage segment is appended
to a combined linkage segment, a table, known as the Linkage
Offset Table (LOT), is updated to indicate the relative ·
position (within the combined linkage segment) of the
new addition. There is one LOT per protection ringJ they
are maintained by procedure lot maintainer. The lot maintainer
routine also contains an entry point for causing the-combining
of a particular linkage segment into a combined linkage
segment. An LOT is indexed by the segment number of the
text segment in question and the entry is a pointer to
the beginning of that (text) segment's linkage information.
The linkage Information Is generally, but not necessarily,
within the combined linkage segment for the given ring.
That is, for text segment n, the n1h entry in the LOT
contains the lb~lp value for n. -rhe entry points to
lot_maintainer and their calling sequences are discussed
below, under Usage.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.05 PAGE 2

There are only three areas of the system which call lot maintainer
directly. Two of these are discussed elsewhere: the -
system initialization pre-linker (BL.7) and the process
initialization pre-linker (BJ.9) both RlJSt assume responsibility
for combining linkage segments and for LOT maintenance.
The third user of lot maintainer is that module of the
Linker which is responsible for deciding whether a given
linkage segment is to be combined, as well as being responsible
for managing the combining. This module is link_man,
the entry points and calling sequences of which are also
documented below. Essentially the role of link man is
to furnish the Linker with a linkage pointer for-a given
text segment; at least, that is its role from the viewpoint
of the Linker. In the context of the present section,
however, link_man may perhaps more accurately be thought
of as a - or even the - primary user of lot...;.maintainer.

Figure 1 attempts to present a schematic view of the LOT's
role. As indicated in it, the segments numbered m and
n have had their linkage information combined into a Combined
Linkage Segment (CLS); hence, the mth and nth entries
in the LOT ar.e pointers to the appropriate places in the
CLS. Both of these pointers are usable as linkage pairs
when an 1R is required, for segment numbers m and n, respectively.
However, as has been noted, not all linkage segments should
be combined into the CLS. This condition is indicated
in the figure by the ,eth entrya it is a pointer to the
(separate) linkage segment for segment number ,e. Another
way of putting it is that the segment numbers in the pointers
which constitute the mth and nth entries in the LOT will
be the same - CLSII - while the offsets in the mth and
nth entries will differJ whereas the segment number in
the pointer which constitutes the ,eth entry will be that
of <~l.link>. ·

Somewhat more detai 1 can now be given as to how link_man
functions. For the sake of convenience, temporarily ignore
protection ring considerations. Consider the first time
a. segment, say <s>, is called in a process. The Linker
will requ1re a linkage pair value for <s>. Therefore,
it calls link man, which will find <s.link>, combine it
into the CLS \by assumption), record a pointer to where
the linkage information has ceen combined as the sllth
entry in the LOT, and return that pointer to the Linker.
Any other references to <s> wi 11 then follow the Linker -
link man route, but in these cases link man will discover
that-it already has a record of the .l.r2 1o·r <s> in the
LOT and wi 11 return that pointer without further ado.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.05 PAGE 3

The addition of protection ring considerations requires
certain extensions to the basic logic, as detailed belowJ
however, the main point to note at this level of discussion
is that when there is one LOT per protection ring, it
is necessary to record copies of the pointer to <s> 's
1 inkage information in the LOT of each ring from which
<s> is referenced, when <s> is referenced. That is, in
most cases it will turn out that after the first reference
to a segment its lQ will be that value found in the LOT
of the ring in whiCh it was first referenced. For the
exceptions to this, and for details of implementation,
see below. Suffice it for now to observe that link man
in general uses the lot_maintainer to record l2 values,
to combine linkage segments (when necessary), and to retrieve
le values.

Figure 2 depicts the situation which occurs when a segment
has an access bracket. Within the access bracket, the
LOT entry points to linkage information (combined or not,
as the case may be) within the ring at hand. Above the
access bracket, the LOT entry points to linkage information
in the high ring of the access bracketJ note that the
fact that a pointer is available does not necessarily
imply that the data are accessible from the outer ring -
indeed, the data are generally not accessible, although
the presence of a call bracket for the linkage segment
in question may permit the linkage segment to be transferred
to. Below the access bracket, the LOT entry points to
linkage information in the low ring of the access bracket
(in this case, the data aret by protection mechanism definition,
accessible from the lower r ng).

The reason why call-bracketed segments cannot have their
linkage segments combined into the CLS for a given protection
ring is implicit in the above. A Combined Linkage Segment
is, after all, a single segment. Therefore, if it were
to have any ca 11 bracket at a 11, it could only have a
single call bracket. However, it contains the linkage
information for many segments, and if those segments had
call brackets this fact could not be expressed in the
one ca~l bracket available. So the linkage ~egments with
call brackets are not combined into CLS'sJ in this way,
each can have its own call bracket. (For the benefit
of the perceptive reader who has perhaps wondered why
it would not do to have the call bracket apply only to
the procedure segment being called, and not to its
then-combinable linkage segment, it should be pointed
out that the Multics protection mechanism is predicated
on the assumption that ring-crossing faults will take
place when the linkage segment is referenced. This constraint
is imposed, as a matter of fact, precisely to guarantee
that the proper linkage pair is used on inter-ring calls.
Cf. 80. 9.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL

LOT

mth entr

nth entry

th entry

p /I. link

linkage

segment

for

segment II 1?.

SECTION 80.7. 05

CLS

linkage

information

for segment II .!!!

linkage

information

for segment II !!,

Figure 19 Role of the kinkage Offset Table

PAGE 4

'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.05 PAGE S

LOT 6

mth entry

Ring 6

LOT 5
linkage
information
for

mth entry segment
11!!!

Ring 5

·---------------------~·--------· .. ····· -·

LOT 4 linkage
informatior
for

mth entry segment
II m -

Ring 4

LOT 3
linkage
informatioil
for

mth entry segment
lim

Ring 3

LOT 2

;!!!th entry

Ring 2

Figure 2. LOT's and Access Brackets

Segment number m is assumed to have an access bracket of 3:5

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION 80.7.05 PAGE 6

U§pge of the LOT Maintainer

To cause a linkage segment to be added to a combined linkage
segments

call lot_maintainer$copy_linkage (clsptr,lsptr, lp,ercode);

with declarations

del (clsptr,lsptr~·lp) ptr, ercode fixed bin (17)J

where

clsptr

lsptr

ercode

is a pointer to the combined linkage segment
(input argument).

is a pointer to a fresh copy (i.e., the links
are 11 unsnapped11) of the linkage segment to be
added (input argument).

is a pointer to the origin of the added linkage
infonmation within the combined linkage segmentJ
that is, the segment number is the number of
clsptr, but the offset is the offset of where
the data pointed to by lsptr were added (output
argument).

is an error code, which will be non-zero if the
new data could not be added to the combined
linkage segment (output argument).

To update an LOT and adjust the definitions pointer (see
also 80.7.01) of the newly-added linkage information:

call lot_maintainer$set_lp. (lotptr, textptr, lp, ercode);

with declarations

where

del (lotptr, textptr, lp) ptr, ercode fixed bin (17);

lotptr

textptr

is a pointer ~o the LOT to be updated (input
~rgument).

is a pointer to the text segment whose linkage
segment bas been combined (input argument).

\

,

. ~"""'·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.05 PAGE 7

ere ode

is a pointer to the new origin of the linkage
information for the segment pointed to by
textptr; that is, it is the J.Q gotten from a
call to lot_maintainer~copy_linkage (input
argument).

is an error code, which indicates that
lP does not point to a valid linkage
section, if non-zero (output argument).

On return from lotnflget 1 p, the entry (in the LOT pointed
to by lotptr) corresponding to the segment number of textptr
wi 11 be J.Q, and the 11 definitions poi nter11 (at 1 P+O) wi 11
have been processed as follows: If the definitions pointer
indicated that the linkage definitions were in the linka~e
se~nt, the segment number of J.e is placed into the definitions
pointer, and any offset in .!e is added to the offset portion
of the definitions pointer (note that this tactic covers
both the case where lP points to a Combined Linkage Segment -
in which case lP will contain a meaningful offset -and
the case where le points to a non-combined linkage segment -
in which case .J.e wi 11 contain a zero offset). If the
definitions pointer indicated that the linkage definitions
were in the text segment the segment number of textptr
is placed into the definitions pointer, and the offset
is not altered. Finally, if the definitions pointer had
already been set (detectable by the presence of an ITS
modifier at lp+O), it is not changed.

To retrieve a linkage pointer from a given LOT:

call lot_maintainer~get_lp (lotptr, textptr, lp, ercode);

with declarations

del (lotptr, textptr, lp) ptr, ercode fixed bin (17);

where the arguments have the same meanings as above, except
J.Q is returned by the routine, and ercode, if non-zero,
1ndicates that the linkage information for the segment
pointed to by textptr is unknown.

Usage and ~ogic of the Linkage Manager

As mentioned above the 1 ink man module serves the Linker
as the source of all linkage-pointers, and causes linkage
segments to be combined when appropriate. Two additional
entry points exist, to serve as an interface with the
LOT Maintainer for such procedures as datmk, which cannot
allow the linkage segments of certain segments to be combined.

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION 80.7.05 PAGE 8

These latter procedures do not call lot maintainer directly,
because that would necessitate their beTng cognizant of
such information as the locations of the LOT and combined
linkage segment of the current ring - information which
link man has available. There is also an initialization
entry point. ·

The secondary calls are:

call link_man~set_lp (textptr, lp)J

call link_man$get_lp (textptr, lp)J

with declarations and interpretations identical to those
of the corresponding entry points to lot maintainer.
The response to these calls by link_man Ts to obtain the
appropriate lotptr (see below) and call the corresponding
lot_maintalner entry~ .

The primary call is

call link_man~get_linkage (textptr, lp)J

with declarations

del (textptr, lp) ptr,

where

textptr is a pointer to the text segment.

.!e. is the linkage pointer, returned by llnk_man.

The logic of 1ink_man$get_linkage is as follows:

1. Get the validation level of the procedure which took the
linkage fault, viaa call to level$get (BY.12.01). The
validation level is the number of the protection ring .
in behalf of whi<:h the Linker is operatlng; call it .rlrl.9..

2. Get a pointer to the LOT for $• These pointers are
stored in an array in llnk_man s internal static storage.
If there is no entry in the ringth position in the array,
create an LOT and enter a poTiitir to it in the array;
also, create a segment to be ~#s combined linkage
segment and enter a pointer to-It in the array of such
pointers (in llnk_man"'s internal static).

'

,

MULTICS SYSTEM-PROGRAMMERS .. MANUAL SECTION 80.7. 05 PAGE 9

3. Determine whether the linkage segment in question is
alreadr in the current process via a call to
lot ma ntainer~get_l p. If ercode is zero (indicating
lQ 1ound). return the 12 gotten to the caller. If
ercode is non-zero (indicating failure to find le),
proceed.

4. Get a pointer to the desired linka~e segment as follows:
call the Segment Management Module s ~t_se~ment
primitive (80.3.03) with textptr and 1 .link' as
arguments; this will obtain a pointer to the original
version of the linkage segment associated with the
text segment in question.

s. If the definitions pointer in the just..;acquired linkage
segment has already been set. this implies that the
segment should not be combined. Therefore, it is
merely necessary to call lot_maintainer1set_lp for
the pointer received from the call to initiate and
then return this pointer to the caller. Otherwise
(definitions pointer not set). proceed.

6. Next. protection ring considerations must be dealt
with. Call status (BG.8.02); an access bracket,
and possibly a call bracket. will be returned
(along with other. irrelevant information).

a) The following rule applies as to which ring the
subsequent copying .2.!:. combining (see b.) wi 11 be
performed in: call the access bracket~:
hi h; call the target ring target_ring; then if

is less than low. target_ring equals low;
~! tinS is greater~an high, target ring equals
n!Qn; otherwise target ring equals rTng. If
target ring does not equal rJ..r.!g after applying
the ruTe. call lot_maintaine~et_lp, this time
for target ring .. s LOT. If a linkage pointer
is found by this call. record it in ring .. s LOT
and return it to caller; otherwise, proceed. ·

b) If a call bracket was indicated by the call to
status. no·combining is to be performed, as the
presence of a call 6racket implies that the
linkage segment at hand belongs to a segment
which has a gate. The following steps are taken:
make a copy of the linkage segment 11 in" target_ring.
with the same access and call brackets as reflected
by stytus. (11 1 n'' here. means that a pointer to the
copys recorded fn target ring .. s LOT by a call to
lot_maintainer1set_lp.) If ring does not equal
target_ring. record the pointer in ring's LOT by
another call to lot_maintainer~set_lp. Return
the pointer to caller.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.7.05 PAGE 10

7. At this point in the logic, it is known that the linkage ~
segment in question should be added to the combined
linkage segment of target ring. Therefore, call
lot_maintainer1copy_linkage; then call lot_maintainer~set_lp
for target_ring~s LOT and, if necessary, for ring's LOT.
Finally, call term~nate for the linkage segment gotten by
the SMM (in step 4 , and return to caller the pointer to
that portion of the combined linkage segment which contains
the desired linkage information (gotten in the call to
lot_maintainer~copy_linkage).

Finally, to initialize link_man, procedure init_admin
in process initialization calls link_man~init. In response
to this call, link_man obtains pointers to the LOT and
combined linkage segment for ring 1 (which were created
during process initialization) from the process directory,
and stores them in the appropriate locations in link man's
internal static arrays of such pointers. - ·

