MULTICS SYSTEM=PROGRAOMMIRS' MANUAL SECTION BD . &.,D1 PAGZ 1

zer
Purooss
The vait-Coordinator is a set of procadures desicaned to
Tfacilitate inter-process control comaunication via the
Traftic Controller entries block and wakeun., The ait-
Coordinator has three functions, namaly:

1. Handing out uniqus nams tags to identify "events"

corresponding to task completiocn, etc.

anotiher process-that an event of interest
occurrad., ‘

To accemplisn tins

ese functions, the Uait-Ceordinator maintains
a per-process table of events of interest to the process,
In addition, the wWait-Ccordinator doess validity checking
of requests by one proceass tc notity another.

Tntreduction

An event is anything which is observed during the execution
of somz proccess and which is of intersst to zoms other
process, or Derhaps somz other procedurs of the Tirst
process. Associated with an event may be an svent-varizble
which has value "C'b before the event occurs and vaiue

"1'h afterwards. Also associated with an event may be

an gvent-nams, which is a unicque identifier for that event.
A typical pattern of com munication beivesn two 2rocasses

is as foilows: One process (process "a'") estabiisnes

an evant-nam2 ang then p1ac¢s a reguest for the othar
~process (process "B") to do scomething, aleng wiinh the

event name and its own Drocess identitier, in a data

common to boxn.proceJavb. The event in this cass co

to the completion of the requested cemputation by th:
process "B, Frocess "4 can now go about its busin

doing other work, if desirsd, or it may incuire as t
vhether the event has happanad yet, or it mav wait f

the event. Frocess "BY, when Tinished with the ragus
computation, no’ the event v calling thez walt-coo
Civing a3 &ai the zvant =nd v SiTic

MULTICS SYSTEM-PROGRAMMEZRS ' MAMUAL ~ SECTION RD.8.01% PAGE 2

of process "A'", '"BY" might then block itself pending another
request.

vent Tdentification .

r

A process may establish a name for an esvent in one of
two ways:

call sei_event (event_name, process_id);
where
event_name 1is a bit string of length 70 bits in
which set_event will store a unique event
identification tag. (See BB,1).

process_id is the identification number of the process
which will note the fact that the event
has happened.

Set_event creates an event name and places it and process_id
in a table of events. This table belongs to the process
calling set_event, but it is.accessible to any other process
which notes events of interest to this process.

Alternatively, one may establish a name for an event by:

call set_eveni_cell(event_name,event_cell);
where
event_name 1is described above

event_cell is a pointer to an event cell. An event cell
is a structure containing two variables:
a bit string of length 1 which will be
set to "1"b when the event is noted,
and an integer (precision 63 bits) in
which will be placed the calendar time
at which the event is noted.

Set_event_cell creates an event name and enters it and
the event_cell location in the tabie of events.

Set_event is used for most routine inter-process communication.
Set_event_cell is used for special applications in which
event-cell is located in an agread upon commcn data base,
(cther than the’ event table) between the communicating
processes, It is intended primarily for communication

with svstem interrupt handler procedures, in which case
event-cell is located in latched core storage. (Since

these procedures cannot take missing-page faults at interrupt
time, they cannot call note_zvent (sez below) which accesses
the paged zvent table.)

MULTICS SVSTEu—P OGRAMMERS ' MANUAL SECTION BD.8.01 PAGE 3

Event noting

A process mav note that an event of interest to another
process has occurred by

call note_event (event_name, process_id);
where
eveni_name 1is the unique identification number of
the event whose happening is being noted,

process_id 1is the process which is interested in
the event event_name.

Note-event will mark this event as "happened" in process_id's
event table, and call waksup (process_ 10) in the traffic
controller,

Consequently, if a process has access to an pvont cell

of another process, it can set that event cell to “1“b

with the aoproprlafe calendar time, and call waksup \proc”ss id)
by itself This latter technique is the only technique
avai]ablé to certain supervisor procedures which cannot
tolerate a page fault,

Fvent checking

A process mav inquire as to whether or not certain events
have happened yet in one of two ways:

z = inquire (event_name, event_time);

call wait (event_list, count);
where

event_name is an event name

event_list is an array of event names

count is an integer

inquire is a function whose value is "1'"b or
"0"b, depending on whether or not the
event has happened vet.
event_time if inquire has value "i'"b, event_time

will contain the time that the event
was noted.

= \\.)
.

i1 %)

-
ppeng:

L 4 £ 1. ~ 3 EN .'
at least "count! of the events in event_list »
it | c

c have h
P11 return immediately. 1T Tewer than "eoun

ountt of

MULTICS SYSTEM=-PROGRAMMERS ' MANUAL SECTION BD.8.0O1 PA

he
(2]
Y
—
I

the events have happenzad, wait will call block in the
Traffic Controlier, wWait will not return untiil "count"
events in ths list have happened.

Discardinag svants

Yhenever a procass has no turther interest in an event,
it may have the event removed from the event 1ist by

call reset_event (event-name);

Reset_event may be called whether or not the event has
happened yet,

The event table

There is one event table for every process which uses

the vWait-Coordinator. It is pagad, and accessible to

any process wnich may note events of interest to the table's
owner, For esach event which has been named by a process,
there is an entry in the table containing:

1. Uniaque event-idantification number. This number,
created by set_event or set_eveni_cell, consists
of the calendar time concatenated with the serial
numboer of the processcor which was used to name
the event.

2. Event_cell switch. This switch, if gon, indicates
that item three is a pointer to an external event_cell,
and items four and five are invalid. On the
other hand, if the switch is off, item three
points to item 5, and item 4 is a process_id.

3, Event_cell pointer., This is a pointer to the
event_cell corresponding to this event,

L, Process_id. This is the identification number
ot the process which is allowed to ncote the event.

5. Event_cell. This is a structure, containing

1. Event switch, If this switch is on,
- the event has happened,

2. Event time. This is the calendar time
at which event switch was turned on.

