
MULTlCS SYSTEM-PROGRAMMERS' MANU~L

!dent 5. f kat ion

Wait Coordinator
J. H. Saitzer

Puroos2

S E C T I O!·J 8 D • 8 • D 1

The ~~it-Coordinator is a set of proced~res.desi~ned to
facilitate inter-process control communlcatlon v1a the
Traffic Controller entr!:es bloc 1(and '.'Ja~uc;. The .Ja:It­
Coord5.nator has three funcd.ol-1s-; nameiy:

PLGE 1

1. Handing out unique nar:1e tags to ~.dentify ttevents 11

corresponding to task completion~ etc.

2. ':'Ja:i. ting for a selected set o·f events to occur.

3. Notifying another orocess·that an event of interest
to it has occurred~

In addit5.on, th·~: i}ait-Coordir;ator does validity checki.ng
of requests by one process to notify another .

..
\ f. • .,L.I • t • I • ' d I • I l ..L... • L>.n £Y.SCLL. J.s anyt.n:tng V·Jil!.cn 1s ooserve our~tng rne exeCU\..:t.on
of some prcces s and VJh ich is of in ter-::o:S t 'co some o tl':er
process, or perhaps some other procedure of the first
process. /=\ssociated v!ith an event may be c;n even·>~;~c:..::J?Je
wh5.ch has value 11 011 b before the event occurs and 1/alu<::
11 111 b aften,.lards . .cC\.lso assoc].at2d v1ith an event may be
an event-nam~, which is a unique identif~er for that event.
A typical pattern of communication between two precesses

0 f '1 (\ (IJ·'I~ ' '• 0 0 1s as o 1 O'.;Js: vne process \process ~~·· j es-cao 1 :.s.·1es
an event-name and then places a request for the other

. process (process 11 8 11) to do somethins:; .. along \'J~_t.h the
event name and i~s own orocess identifier, in a data base
common to both.orocesses. The event in this case corresoonds ' . '

to the completion of the requested computation by t~e
process 11 5 11 • Frocc::ss 1'2, 11 can no<:J co about :i. ts business
O'oin · .:-t ~- •• ,..,,.• '·c: 'nc:·;v-"r; ,:;: 1-' ~n,...,uirc~ ':'lc_ to .. 1 g 0 L.:ll;oj VV,.Jl .<, .~I 0~-> .'.I :::;<...tl or .l L. fl c\y :.1 -.i •• ·..:; C~-

' t' t ..._, .+- 1 • 1 +- '" • • -1- r r v1ne ·ne r L.ne even L. nas nappt::neo ye L., or :. ·c rna·;~ \·::::..l...;;_ TO

th•::- ""Vent c,·roc::::·c:s 11 u:::. 11 '"':·lPil finich.:::.r1 ,,,·!·:·h th·'-' ("'-'0L'ec:;c·ed '-"" '-" I _. e ..._. _, , .. J -..- t •• ~· -.J I I '-· ._j \J'" •• l,. t • '..,. ,_ -': ~ ·-""-..... '--_.

~~8~~ ~~a!~ o~ ~~ c-~~s t;·~~:; e ~~~~;~ t ~~ ~~~~ 1 ~.~2·;; ~: !~ ~~ e)'~!~i~ ~~ ~~~~~ ~-~;~~tor,
--' -·

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL S E C T I O~J 8 0 • 8 • 0 1 P.L\GE 2

of process n,':l.". 118 11 might then b iock itself pending another
request.

Event !dentification

A process may establish a name for an event in one of
tv.ro ltJays:

call set_event (event_name 1 process_id);
where

event_name is a bit string of length 70 bits in
which set event will store a uniaue event
identification tag. (See BB.1). ·

process_id is the identification number of the process
which will note the fact that the event
has happened.

Set_event creates an event name and places it and process_id
in a table of events. This table belongs to the process
calling set.;..event, but it is.accessible to any other process
which notes events of interest to this process.

Alternatively~ one may establish a name for an event by:

call set_event_cell(event_name 1 event_cell);
\t'llhere

event_name is described above

event_cell is a pointer to an event cell. An event cell
is a structure containing two variables:
a bit string of length 1 which will be
set to 11 111 b vvhen the event i·s noted,
and an integer (precision 63 bits) in
which will be placed the calendar time
at which the event is noted.

Set event cell creates an event name and enters it and
the-event:cell location in the table of events.

Set_event is used for most routine inter-process communication.
Set_event_cell is used for special applications in which
event-cell is located in an agreed upon common data base~
(other than the·event table) between the communicating
processes. It is intended primarily for communication
with system interrupt handler procedures, in which case
event-cell is located in latched core storage. (Since
these procedures cannot take missing-page faults at interrupt
time~ they cannot call note_event (see belovJ) ~.;vhich accesses
the paged event table.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.8.01
' ..

Event noJing

A process may note that an event of interest to another
process has·occurred by

call note_event (event_name 1 process_id);
where

PAGE 3

ever.tt_name is the unique identification number of
the event whose happening is being noted.

process_id is the process which is interested in
the event event_name.

Note-event \rJ i 11 mark this event as 11 happened 11 in process_5.cl 1 s
event table 1 and call v.Jakeuo (process_id) in the traffic
con t ro 1 1 e r.

Consequently, if a process has access to an event cell
of another process, it can set that event cell to ''1"b,
with the appropriate calendar time 1 and call wakeup (process_id)
by itself. This latter technique is the only technique
availabl~ to certain supervisor procedures which cannot
tolerate a page fault.

Event checking

A process may inquire as to whether or not certain events
have happened yet in one of tvJo vJays:

z = inquire (event_name 1 event_time);

call wait (event_list, count);

where

event_name

event_l ist

count

inquire

event_ time

If at least "coun
~·;ai. t vJi 11 return

is an event name

is an array of event names

is an integer

is a function \tJhose value is 11 111 b or
11 0 11 b 1 depending on vJhether or not the
event has happened yet.

• f • • -"' h ~ 1 II 111b ' .._ • 1 1nqu.1 r<=- , as vo. ue . , event_ L 1me
will contain the time that the event
,,.,,as noted.

rn!71,2d 5.a te 1 y.
11 of the events 5.n event 1 ist have happened,

.,. ~ T- ~\,fc r t ~,-;-.n t L- 0 II n .:..L !! 0 ·i.:: ~ T c:_.. ... 1 c:,1 ._ -i.

MULTICS SYSTEM-PROG~AMMERS' MANUAL SECTION BD.8.fJ1

the events have happened, viai! vJi 11 cai 1 block in the
T r a f -F i c Con t r o 1 1 e r • \r,j a i t ~,,Ji 1 1 no t ret u r n u n t ii "co u n t 11

events in the list have happened.

~henever a process has no further int~rest in an event,
it may have the event removed from the event list by

call reset_event (event-n2.me);

Reset event mav be called whether or not the event has
happened yet. '

The event table

P t).G E L}

There is one event table for every process which uses
the Wait-Coordinator. It is paged, and accessible to
any process which may note events of interest to the table's
owner. For each event which has been named by a process,
th . -'- . "'-h ... b 1 ere :ts an enLry :en ~,.,e La. e con~..a:tn:tng:

1 •

2 .

3.

4.

Unique event-identi-Fication number. This number,
created by set_event or set_event_cell, consists
of the calendar time concatenated with the serial
number of the processor livh ich "'/as used to name
the event.

Event cell S\,.Jitch. This s~;vitch, if QJJ., indicates
that item three is a pointer to an external event_cell,
and items four and five are invalid. On the
other hand, if the switch is off, item three
points to item 5, and item 4 is a process_id.

Event_cell pointer. This is a pointer to the
event_cell corresponding to this event.

Process_id. This is the identification number
of the process which is allowed to note the event.

5. Event_cell. This is a structure.., containing

1. Event svJ:ttch. If this svvitch 5.s on,
the event has happened.

2. Event time. This is the calendar time
at which event switch was turned on.

