
MULTICS SYSTEf\1-PROGRAf'!ifv1ERS' t~.L'.\NUAL

Identification

SECTION 80.9.02 PAGE

Published: 05/03/67

Outward call argument management: arg_pull~ arg_push
R. rvl. Graham., fvl. A. Padlipsky

Arg_pull is a ring-0~ slave procedure used only by the
protection mechanism. Its function. is the validation
and copying of arguments for calls from an inner ring
to an outer ring. The entire argument list (suitably
modified) and all arguments must be copied into the stack
of the called procedure, as data in the caller's ring
are by definition inaccessible to outer ring procedures.

Arg_push is also a ring-0~ slave procedure used only by
the protection mechanism. Its function is the copying
of return ar·guments back into the i nne r-r i ng areas VJhe re
they are expected to be found on returns from an outer
ring to an inner ring. That is~ it is the converse of
arg_pull.

Arg_pull and arg_push are predicated on the assumption
that procedures making outlr1ard calls possess appropriately
stt"uctun::d ar~Jument lists- specifically_. 11 data descdpt:i.ons11

must be present. E:PL/?L/1 procedures may insure this
by use of the 11 cal'lback11 option; sec BP.0.02. [\Jon-PL
procedures must be coded so as to produce the equivalent
of what PL ones do; see BD.1., 80.7.01., and Figure 1 1 below.

In the initial implementation., varying strings may not
be passed as arguments on outward calls. All other data
type~ mentioned in section 88.2 (System Interfaces) are
acceptable.

Us~

The Gatekeeper cal'ls arg_pull as follovJs:

arg_pull (oldap, newsp., nextsp., ring .. err_code);

with arguments declared

del (oldap., newsp 1 nextsp)ptr., (ring 1 err_code)
fixed bin (1 7) ;

MULTI CS S YS TU1- PROGRM,1~~ERS' rvtl\NUA L SECTION 80.9.02 PtJ.GE 2

where oldao is equal to the argument pointer of the faulting
procedure,=-nevJSQ is equal to the stack pointer of the
target procedure, .tina is the ring number of the procedure
for which the Gatekeeper is processing a call. Upon return
from arg_pu 11, .o&.2~t.~ contains a po5_ nter to a 11 nev1er"
stack frame (which the Gatekeeper will place into newspl18
using the terminology of Figure 2, 80.9.01), and err_code
(if non-zero) contains a code indicating the type of error
which occurred in attempting to 11 pull 11 the arguments.

The Gatekeeper calls arg_push as follovJs:

call arg_push (oldap, ne\vap, ring, err_code);

with declarations

del (o1dap, newap)ptr, (ring, err_code) fixed bin (17);

where olda .. .r2. is the argument pointer for the procedure
being returned to, .D.§:tJJ2 is the argument pointer for the
procedure being returned from, ring is the ring number
of the procedure the Gatekeeper is processing a return
from, and err_code is as above.

1 • A rg_pu 11

Figure 1 presents the format of a 11 ca 1lback11 -type argum2nt
list. Figure 2 pre.:;ents a block diagram of arg __ pull.
The logic is as follovJs: If there are no arguments (left
half of first word of argument list equals zeroL nex..:t~
is set to point to .D..§Y.§.Q + 32, err_code is set to zero
(indicating successful completion) and the rou~ine returns.
If there are no data descriptions (left half of second
word of argument list is zero) and there exist arguments
("n" is not zero), an error condition exists and the routine
returns, after-setting err_code to 1. Next, check that
none of the argumants is of illegal data type; if there
:is an i 11 ega 1 data type, set err _code to 2 and return.
The final validity check which must be performed is the
determination that each argument pointed to is indeed
accessible to the routine \I'Jhose argument list it appears
in. (This step must be taken to prevent arg_pu11 from
becoming an unvJi 11 ing accomplice to an illegal act by
exercising its reading privileges indiscriminately; it
is not, of course, taken when arg_pull is operating in
behalf of a ring-CJ routine.) Call val:tdate_a,-g (80.9.03)

r~ULTICS SYSTEI"1-PROGRAt~t'IERS' fv~ANUAL SECTION BD.9.02 PAC._ 3

for the arguments and r.io.g; if any argument is not accessible.,
set err_code to 3 and return. (To guard against possible
alteration of the pointers on an interrupt., the validation
is performed on arg_push's own copy of the argument list;
the problem here is a consequence of the fact that segment-sharing
allmvs for the possibility of some other user's altering
the segment containing the argument list after validation -
cf.BD.9.01). Otherwise., all of the argument list except
the individual argument pointers can be copied directly
into the nevv list., beginning at newsp+32.

The arguments themselves must be handled with some care.
Scalars can be copied into the new stack in locations
subsequent to the last data description with their corresponding
argument pointer entries set to point to them. In the
case of strings and one-dimensional arrays., the dope and
data are copied without alteration into locations subsequent
to p; new specifiers., to which the argument pointers are
made to point., are created., taking into account the locations
of the copies of the dope and data. (Specifiers and dope
are discussed in section BP.2.02.) The final length of
the area containing the argument list and the copied arguments
is added to nevvsp-:.32 to determine the origin of the next
available stack frame in the new stack; this value is
returned to the Gatekeeper. Err_code is set to zero.,
indicating successful completion.

In the initial implementation., all arguments will be copied;
that is., no attempt will be made to avoid dealing with
arguments which may be accessible from the new ring without
copying.

') ,_ . Arg_push

Figure 3 presents a block diagram of arg_push. The logic
:is as fo 11 ov1s: If there are no arguments (1 eft ha 1 f of
first v1ord of argument list pointed to by old0..Q equals
zero)., set err_cocle to zero (indicating successful cornplet5.on)
and return. Otherwise., search the data descriptions associated
VJith ol_®.t~~ recorcang the number (i.e ... position in argurne:nt
list) and data type of any which are return arguments.
If there are no return arguments., set err_code to zero
and return. Next., call validate_arg (80.9.03) for any
r·eturn arguments found and rino, using copies of the argument
pointers found in ffi.'L.J.PQ"s list. Copying pointers and
validating argument accessibility are done for the same
reasons here as they are in arg_pull: possible alteration

-.

MULTICS SYSTEf'v,-PROGRAM1v1ERS' MANUAL SECTION 80.9.02

in the pointers case, and possible fabrication in the
accessibility case. (Note that ring is the ring number
of the procedure being returned Lrom.) If any return
argument is not accessible from rina, set error_code to

· 1 and return. Otherwise, copy the data pointed to by

PAGE 4

the return argument pointers in the copy of the argument
list pointed to by newa2 into the locations indicated
by the corresponding argument pointers in the argument
1 is t pointed to by o 1 de.Q. (Un 1 ike the arg_pu 11 case,
arg_push need only copy data: for the data types permitted
to be passed on inter-ring calls, dope and specifiers
cannot have changed as a result of the call being returned
from.) After copying the data, set error_code to zero
and return.

,_

MUL TICS ~ YS TEt~ PRC'"n,At,1MERS' MANUAL SECTION 80.9.02 PAGE 5

Figure 1. Argument Lists

la. In the calling procedure (general form):

0
oldap ------1.>

1
If 2i~, there are
n pointers to
argument discriptions2

4

May not be presen t

0

2~'~-n 0 or 2

or 2~\-n

~
al

~
a2

.

. .
an

~
- l.rTs
stack pointer

pl
-

.

.

.

pn

~

If 2, there are 2 words after the
argument pointers representing the
stack pointer for last storage
generation of procedure being called
(see BD. 7. 02)

Pointers to arguments (ai); occupy
2*n words •

Pointers to data descriptions (Pi);
occupy 2i~ words •

' o ' T

lv1ULTICS SYSTEt·1 PROGRA.fv1fv1ERS' MANUAL SECTION 80.9.02

Figure 1, continued.

lb. Example of arg_pull-produced argument list:

newsp + 32 0

1 4 0

2 4

4 (al)

6
(a2)

8
(Pl)

(Pz)
10 1-----------------------t

Value of 1st arg

Wlil221?1717!;Jli)7l!illl!L7l T:/Z;

specifier for

2nd arg

Dope for 2nd arg

2nd arg

Assume that the first argument (of 2) is a single precision scalar

and the second a non-varying string.

PAGE ·5

Figure 2.

0 _ rr code

c:r-L---=-3 __ __.

SECTION 80.9.02

~e ~~-~Return

Set up C for
nextsp compu­
tation, accor1 -
ing to length
of arg. list.

'Y ~ixedl
ort1ons 1.

ts new 1·· st - -- -· _______ .t

Make new spec
ifier, pointi g
to dope at .it
locat1on afte

c=-~ 8 ~Return

opy arg. int
jth location
after Pn; ne\
a(i) points

to it

i = i + 1·
j = j + 2'
odd word ig­
ored if singl

precision)

Pn, data at j + 2nd

PAGE 7

. ,'

fv\ULTICS SYSTEtvi-PROGRAfvit~ERS' fvlANUAL

Figure 3.

Copy
ne\vap

arglist

Record re-I
turn args'
positions j

SECTION 80.9.02

err code
= 0

~e p.~-fP- Return

oldap--·oldarg(l")
= ne\vap --'P.

returnarg(i)

eturn .. ~--4err code
- = 0

No

PAGE 8

