
r.

TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
P. G. Neumann
BF.1.00
08/08/68

This document represents a minor rewrite reflecting the
recent l/0 system redesign. Externally little has changed.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION RF.l.OO PAGF 1

ldentific;ation

Summary of 1/0 System User Calls
P. G. Neumann

Purpose_

Puh 1 i shP.rl: 08/08/68-
(Supersedes: BF. l. 00, 02/08/6,8

BF.l.OO, 08/14/~7)

Section BF.l represents the collection of essentially all
information which an average user of the 1/0 system normally
needs to know, assuming he has already read Section BF.O for
background. The purpose of Section BF.l.OO is to provide for
each I/O-system user call an introductory description of the call
and a reference to the subsection(s) of BF.l in which the call is
discussed.

lntroduc;tion

The list of user calls described herein is as follows. Each call
is followed by the section number in which it appears.

attach
detach
changemode
getmode
readsync
writesync
reset read
resetwrite
worksync
iowa it
abort
format
tabs
order
getsize
setsize
read
write
setdelim
getdel im
seek
te 11
readrec
writerec
upstate
divert
revert
restartio

BF.l.Ol
1. 01
1. 01
1. 01
1. 04
1. 04
1. 04
1. 04
1. 04
1. 04
1. 04

1. 05
1. 05
1. 06
1. 06
1. 06
1. 06
1. 06
1. 06
1. 06
1. 06
1. 07

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 2

Glossary Qf Terms

The 1/0 system (lOS) outer calls summarized in this document
provide the interface for all modttles normally called by an lOS
user. These outer calls are presented in detail In subsequent
subsections of Section BF.l. Certain terms used in the overview
of lOS outer calls given below are summarized here for the
convenience of the reader. The section in which each term is
first thoroughly defined is indicated.

ioname (Section BF~l.Ol)

An ioname is a name used by the 1/0 switching complex to route
calls within the lOS. An ioname is either a rlevice identifier
(e.g., tape reel number or typewriter description) or a framename
(see frames, below). An ioname is generally the symbolic name of
data known to the lOS and accessible to the user by that name.

attachment (Section BF.l.Ol)

An attachment is the association of one ioname with another
ioname; this association is established by an attach call (see
below). Each attachment is remembered by the 1/0 system until
detached by a detach call. An attachment may be the association
of a framename (see frames, below) with a device or with another
frame. Subsequent to an attachment, data may be read or written
by issuing a~ or write call (see below) with the appropriate
ioname.

iopath, attachment graph (Section BF.l.Ol)

For any ioname, an associated ioname is specified by each
dttachment. An iopath is a chain of ionames iteratively implied
by a given chain of attachments (e.g., 'a' to 'b', 'b' to 'c',
etc.) and followed by the GIOC interface module or terminating
with the file system interface module. The graph defined hy the
totality of all given associations is the attachment graph.

element (Section BF.l.OS)

An element is a linear array of bits. It is the smallest data
entity normally referred to by an 1/0 outer call. The most
frequent element sizes are expected to be 1, 9 and 36 bits.

frame, ~ (Section BF.l.OS)

A data frame (hereinafter called a frame) is an entity of data
which is accessible through the 1/0 system outer calls, and which
in particular may be read from or written into as if it were a
device. An ioname referring to a frame is a framename. Each
frame is a linear array of items. A linear frame is a linear
array of items, where each item is an element. A sectional frame
is a linear array of items, where each item consists of two

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 3

subframes (e.g., a linear frame and a sectional frame). Note
that, since a sectional frame may have a sectional suhframP which
behaves similarly to the original frame, this ~efinition of a
sectional frame is recursive, and that any sectional frame may
thus have recursively defined substructure. Data is containerl In
each linear subframe, while each sectional suhframe implicitly
defines substructure. The linear subframe may thus, for examplP,
serve as label information for the associated sectional suhframe
(perhaps for use by a data management system), or as ln~ependent
data.

For the purpose of descriptive simplicity, a distinction is made
between direct frames (associated directly with devices or
pseudodevices) and Indirect frames (associated only Indirectly).
In general, the effects of attachments and detachments propagate
down the iopath for direct frames, and do not propagate for
indirect frames. This distinction is discussed in BF.l.Ol.

reference pointers CBF.1.05)

Associated with various outer calls (~, write, ~ and ~
discussed below) are several reference pointers. These include
the "read", "write", "first", ''last" and "bound" pointers. These
pointers indicate specific items within the frame in question.
The current item with respect to a~ or write call on a given

,-.. framename Is that pointed to by the "read" or "write" pointer,
respectively. The "read" pointer indicates the next Item to be
read. The "write" pointer indicates the next item to be written.
The "first" pointer always indicates the first item in the frC'Ime.
The "last" pointer indicates the last Item In the frame. The
"bound" pointer indicates the item beyond which the given frame
may not grow. In a sectional frame, the "rea~" anrl "write"
pointers are not meaningful. They are functionally replaced by
the "current" pointer, which serves essentially as a combined
"read" and "write" pointer, and which points to the next
sectional subframe to be read or written. There are separate
relevant pointers for each level of sectional subframe. In the
case of physical input/output, the "currentrec" poiRter replaces
the "read" and "write" pointers, and points to the next record to
be read or written.

delimiters (Section BF.1.06)

There are two kinds of 1/0 delimiters meaningful to an 1/0 user
on Input. These are the break characters and the read delimiters
which are established by means of the setdelim call (see
BF.1.06). A break character is meaningful only to a
character-oriented device, and serves three functions: it
delimits physical Interrupts, canonlcalization and erase-and-kill
processing. A break character is an interrupt delimiter in that

.~ it is recognized by the GIOC and causes an immediate interrupt.
A break character is an erase-and-kill delimiter in that its
presence permits erase and kill processing (see BC.2.03) to take
place over all characters received since the preceding hreak

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 4

character. A break character is a canonicalization delimiter in
that its presence permits canonicalization (see BC.2.02) to take ~
place over all elements received since the preceding
canonicalization delimiter. For· certain devices (e.g.,
typewriters), the new-line character is the default break
character. In addition, whether established as a break character
or not, the new-line character always delimits canonicalization
and erase-and-kill processing.

A read delimiter Is an element whose presence terminates the data
transmission of a~ call. Read delimiters are applicable to
all read calls, irrespective of the corresponding device(s) and
the element size. There is no default read delimiter. That is,
in the absence of read delimiters given In the setdelim call~
there are none. On output, there are no delimiters meanin~ful to
the lOS.

status (Section BF.1.07)

The status of a given call consists of 72 bits of Information
which are passed to successive calls further along the lopath and
which are then returned back up the iopath. This status
information is modified by each module in a given iopath as
required. The status includes an 18-bit transaction identifier
which is unique among outstanding transactions for a given
ioname.

·~.

l'viULTICS SYSTEM PROGRArt~1ER'S MANUAL SECTION BF.l.OO PAGE 5

1M Outer Calls

A brief description of each call and its arguments follows. The
status argument is contained in each call, and is discuss~d
above. All calls are generally applicable to every out~r module
representing a device or pseudodevice (se~ BF.l.03), with
exceptions due to peculiarities of each module. For example, the
tabs and format calls are app'licable only whf"r~ printinr: is
involved. Similarly, calls dealing with readin~ or writin~ are
not meaningful where devices are write-only or read-only,
respectively. It is assumed that the reader is familiar with the
glossary of terms given above.

call attach(ionamel,type,ioname2,mode,status);

The attach call associates the given ioname (ionamel) with a
previously defined name or otherwise known device specified by
ioname2. This association is meaningful within the framework of
the user's process group. The resulting attachment remains in
force until removed by a detach call (see below). A~ and a
mode (see the changemode call below) are associated with the
attachment. See BF.l.Ol.

call detach(ionamel,ioname2,disposal,status);

The detach call removes for the given ioname(s) an association
established by an attach call. The djsposal argument indicates
how dedicated resources (e.g., tapes and tape drives) are to be
treated. See BF.l.Ol.

call changemode(ioname,mode,status);

The mode (specified by mode) of an attachment describes certain
characteristics related to the attachment (e.g., readahle;
writable; appendable; random or sequential; if sequential,
forward only or backspaceable; physical or logical; if logical,
linear or sectional). The changemode call permits mode changes
to be invoked for the given ioname(s) which modify the mode of
the attachment. See BF.l.Ol.

call getmode(ioname,bmode,status);

The getmode call returns a terse encoding (bmode) of the
the attachment specified by the given ioname. This
intended primarily for use by lOS modules. See BF.l.Ol.
is tentative.)

call readsync(loname,rsmode,1imlt,status);

mode of
ca 1 1 i s

(Design

For a given valid loname (i.e., a name which has previously been
/-., proper 1 y attached by means of an at tach ca 11), the readsync ca 11

sets the read synchronization mode (rsmode) of subsequent ~
calls (see below). This mode is either synchronous or
asynchronous. Synchrony implies that control is not returned to

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAnE 6

the caller until the read request Is either physically initiated
or physically completed, depending upon whether the workspace
synchronization mode {see the worksvnc call below) is
asynchronous or synchronous, respectively. Asynchrony implies
that read-ahead is possible to the extent permitted by the limit
argument, which points to the desired maximum number of elements
which may be read ahead. The default mode is asynchronous. See
BF.l.04.

call writesync{ioname,wsmode,limit,status);

For a given (valid) ioname, the writesync call sets the write
synchronization mode (wsmode) of subsequent wrjte calls (see
below). The mode is either synchronous or asynchronous.
Synchrony implies that control is not returned to the caller
until the write request is either physically initiated or
physically completed, depending upon whether the workspace
synchronization mode {see worksync) is asynchronous or
synchronous, respectively. Asynchrony Implies that write-behind
is possible to the extent permitted by the limit argument, which
points to the desired maximum number of elements which may be
written behind. The default mode is asynchronous. See BF.l.04.

call resetread(ioname,status);

The resetread call is used to delete unused read-ahead data
collected by the 1/0 system as a result of read-ahead associated
with the given ioname. See BF.l.04.

call resetwrite(loname,status);

The resetwrjte call is used to delete unused write-behind data
collected by the 1/0 system as a result of write-behind
associated with the given ioname. See BF.l.04.

call worksync(ioname,wkmode,status);

For a given ioname, the wor~~~~c call sets the workspace
synchronization mode. The modeode) Is either synchronous or
asynchronous. Synchrony implies that control is not returned to
the caller until the 1/0 system no longer requires the user's
workspace (see~ and wrjte calls below). Asynchrony implies
that some kind of initiation of the call has taken place,
although the workspace may still be In use. The default mode Is
synchronous. See BF.l.04.

call iowait{ioname,oldstatus,status);

For a given ioname whose workspace synchronization morle is
asynchronous, the iowalt call defers the return of control as if
the workspace synchronization mode were synchronous for the most
recent~ or write call or for a specified previous call. The
argument oldstatus is the original status argument returned for
the particular previous transaction, and Is used to identify that

-~

/.........._

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 7

transaction uniquely. If oldstatus is missing, the most recent
transaction is implied. See BF.l~04.

call abort(ioname,oldstatus,status);

When the workspace synchronization mode Js synchronous, the abort
call causes all outstanding transactions to be aborted (oldstatus
is ignored). When the workspace synchronization morlP ls
asynchronous, transactions are aborted beginning with the one
corresponding to oldstatus, which contains the identification of
an earlier call. See BF.l.04.

call format(ioname, ••• ,,status);

This call is included here as a placeholder.

call tabs(ioname, ••• ,status);

This call is included here as a placeholder.

call order(ioname,request,argptr,status);

The order call is used to issue a request (request)
modules. argptr points to a data structure containing
relevant to the particular request. The call is
communication among 1/0 system modules. It may also be
set hardware device modes.

call getsize(ioname,elsize,status);

to outer
arguments
used for

used to

The getsjze call returns the current element
associated with read and write calls for the given
BF.l.OS.

size (elsize)
i oname. See

call setsize(ioname,elsJze,status);

The setsize call sets the element size (elsize) for subsequent
read and write calls with the given ioname. See BF.l.OS.

call read(ioname,workspace,offset,nelem,nelemt,status);

The~ call attempts to read into the specified workspace
(starting offset items from the beginning of the workspace) the
requested number (nelem) of elements from the frame specified by
the given foname. Reading begins with current item of frame.
Thus for a linear frame, reading begins with the element pointed
to by the "read" pointer. Reading is normally terminated by the
occurrence of a read delimiter or by the reading of nelem
elements, whichever comes first. The "read" pointer is moved to
correspond to the element after the one last read. For a
sectional frame Y, reading begins with the first element (pointed
to by the "read" pointer for X) of the current subframe X, where
the current subframe is that pointed to by the "current" pointer
for the frame Y of which X is a subframe. Reading is normally

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO

terminated by the occurrence of the end of the subframe, by the
occurrence of a read delimiter, or by the reading of nelem
elements, whichever comes first. The "current" pointer for Y anrl
the "read" pointer for X are moved to correspond to the first
element of the next frame X. See BF.l.06.

call write(ioname,workspace,offset,nelem,nelemt,status);

The write call attempts to write from the specified workspace
(starting offset items from the beginning of the workspace) the
requested number (nelem) of elements onto the frame specified by
the given ioname. The number of elements actually written is
returned (nelemt). The behavior of the write call with respect
to the "write" pointer is similar to that described above for the
read call with respect to the "read" pointer, except that there
~o write delimiter. Writing begins with the current item of
the frame. Thus for a linear frame, writing hegins with the
element pointed to by the "write" pointer. Writing is normally
terminated by the writing of nelem elements. The "write" pointer
is moved to correspond to the element after the last one written.
For a sectional frame Y, writing begins with the first element
(pointed to by the "write" pointer for X) of the current suhframe
X, where the current subframe is that pointed to by the "current"
pointer for the frame Y of which X is a subframe. Writing Is
normally terminated by the writing of nelem elements. The
"current" pointer for Y and the "write" pointer for X are mover!·
to correspond to the first element of the next frame X. See
BF.l.06.

call setdelim(ioname,nbreaks,breaklist,nreads,re~dlist,status);

The setdelim call establishes elements which delimit data read by
subsequent linear~ calls with the given ioname. The argument
breakl~ points to a list of break characters (containing
nbreaks elements), each serving simultaneously as an interrupt,
canonical izatlon and erase-kill delimiters. Break characters are
meaningful only on character-oriented devices. The argument
readljst points to a list of read delimiters {containing nreads
elements). The new delimiters established by this call are in
effect until superseded by a subsequent setdellm call. See
BF.l.06.

call getdelim{ioname,nbreaks,breaklist,nreads,readlist,status);

The getdelim call returns to the caller the delimiters
established by the most recent setdelim call, with the arguments
having precisely the same meaning for both calls. See BF.l.06.

call seek(ioname,ptrnamel,ptrname2,offset,status);

The~ call sets the reference pointer specified by otrnamel
to the value of the pointer specified by ptrname2 plus the value
of a signed offset (if offset is present). ptrnamel may he
"read", "write", "last" or "bound", or in the case of a sectional

. "

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAGE 9

frame, "current", "last" or "bound". ptrname2 may be "read 11 ,

"write", "first", "last" or "bound", or in the case of a
sectional frame, "current", "first", "last" or "bound". For
physical 1/0 (using the .readrec and wrjterec calls), ptrnamel may
be "currentrec", "last" or "bound", while ptrname2 may be
"currentrec", "first", "last" or "bound". The~ call is used
to truncate, e.g., seek(ioname,"last","last",-40), or to set the
bound of the frame, e.g., seek(ioname,"bound","last",27) in
addition to its more traditional usage involving the "rearl"' and
"write" pointers, e.g., seek (ioname,"read", 11write 11 ,-2). The
"read" and "write" pointers are also set as a result of read anrl
write calls, respectively (see above). Each reference pointer
refers to an item number. Which frame is referred to depen~s
upon the~ argument of the attac~ call. See BF.l.06.

call tell(ioname,ptrnamel,ptrname2,offset,status);

The tell call returns the value of the pointer specified hy
Q!rnamel as an offset (offset) with respect to the given
ptrname2. The arguments ptrnamel, ptrname2 and offset have the
same meaning as in the~ call. As an example, the ~ call
may be used to obtain the bound of a frame by call
tell(ioname,"bound","first",offset). See BF.l.06.

,........ ca 11 read rec (I oname, reccount, rwo rkspace, roffse t, rne 1 em, rne 1 emt, status);

The readrec call is intended solely for reading devices concerned
with physical records, such as card readers, printers and
magnetic tapes. It is accepted by the tape DCM and by the unit
record DCMs. It is also accepted by DSMs calling these DCMs when
the device attachment .IIlQ.S1e. contains "P" (physical>. The argument
reccount indicates the number of records which the readrec call
represents. The call is similar to the u.su1 call, except that
rnelem, roffset and rnelemt are arrays of element counts, and
rworkspace is an array of pointers to the corresponding
workspaces. The significance of each of these arguments
corresponds to the counterpart in the read call without the
initial 'L'· An item in each array (of size reccount)
corresponds to a physical record. See BF.l.06.

call writerec(ioname,reccount,rworkspace,roffset,rnelem,rnelemt,status);

The writerec call is to the write call as the readrec call is to
the ~ call. The arguments are as in the wri terec call. See
BF.l.06.

call upstate(toname,status);

The upstate Gall is used for two purposes. First, it provides a
~"""· way to give cont ro 1 to the I /0 sys tern, so that the I /0 sys tern can

determine up-to-date status and perhaps physically initiate
additional work. In the case of an asynchronous workspace mode~
the user's status for outstanding transactions will be updated.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO PAr,E 10

Second, the upstate call is used to obtain status for an earlier
transaction that suffered a fatal error, when certain Device
Interface Modules are in an "error" state. See RF.l.07.

call divert(ioname,mode,status);

The divert call suspends any current 1/0 on the attached device
specified by ioname and allows immediate initiation of new 1/0.
The design of this call is tentative. If ioname and newionam~
are identical, joname is renamed. The design of this call is tentative.

call revert(ioname,mode,status);

The revert call reinstates the original attachment suspended by
the previous diyert call. The design of this call is tentative.

call restartio(ioname,status);

The restart call is used to restart input-output for the given
ioname subsequent to a quit. This call is primarily for the use
of the overseer. The design of this call Is tentative.

< •

M •

- t... .

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.l.OO

Argyment peclaratjons

PAGE 11

The declarations for the arguments of the above calls are
tabulated below in the order of their appearance. The arguments
for the fotmat and~ calls are not included, since these calls
are only placeholders for ultimately required calls.

declare
ionamel char(•),
type char(•),
loname2 char(•),
mode char<*),
status bit(72),
disposal char<•>,
l.oname char(•),
bmode bit(72),
rsmode char(•),
limit ptr,
wsmode char(•),
wkmode char(•),
oldstatus bit(72),
request char(•),
argptr ptr,

I• maximum=32 •I
I• maximum=32 •I
I* maxlmum=32 •I

I* maximum•32 •I

elsize fixed bln(35),
workspace ptr,
offset fixed bln(35),
nelem fixed bin(35),
nelemt fixed bln(35),
nbreaks fixed bin,
breaklist bit(•),
nreads fixed bin,
readlist bit(•),
ptrnamel char(•),
ptrname2 char(•),
reccount fixed bin,
rworkspace(•) ptr,
roffset(•) fixed bfn(35),
rnelem(•) fixed bfn(35),
rnelemt(•) fixed bin(35);

