
•

f·,1UL TICS s YS TEfvi-PROGRA.f'-~fv1ERS I fvi.ANUAL S E C T I ON B F • 1 • 1 1 P.AGE

_ Publis~ed: 08/31/66

Identification

Linear Frames
J. F. Ossanna, V. A. Vyssotsky, G. G. Ziegler

Puroose '

The ~1ultics !/0 system provides capability for manipulating
linear (unstructured) frames. This section describes
the nature of linear frames and the constraints on linear
frames.

Elements and Frames

A linear frame is intrinsically a sjngle sequence of bits.
It has a length, which is the number of bits in the frame,
and vJh ich may be zero. If the 1 ength of a 1 in ear frame
is ~reater than zero it has a first bit and a last bit.
A l1near frame has no· intrinsic structure beyond that
implied by the preceding statements, but a structure may
be imposed on it to allow convenient manipulation of Lhe

~- data in the frame. In particular, referencing the data
by bit number and number of bits \r.Jould be inconvenient.
To alleviate this problem, when a linear frame is attached
to a process, an element size in bits is declared. This
element size is a positive integer which may be any integer
in the range 1 to 36x214, inclusive; if an element size
is not explicitly declared, a default declared element
size of 9 bits is assumed by the I/O system. Read and
write calls specify which data, and how much data, is
to be read or written in terms of number of elements,
and the declared element size is used by the I/0 system
to determine which bits are implied by a request form
elements starting with element number n. It is expected
that 9 bits (1 element= 1 character) and 36 bits (1 element
= 1 wor.d) will be commonly used element sizes, but a user
program· may, for example, manipulate a frame as a sequence
of 960 bit elements (1 element= one 80 column binary
card image) if that is appropriate to the application.
It should be emphasized that the element size is not a
property of the frame, nor of the data in the frame, but
is rather a property of the way data is transmitted to
and from the frame. Thus it is possible to use a given
frame today with element size 23 bits and tomorrow with
element size 41 bits. Because.the len~th of the frame
is property of the data in the frame, 1f the frame is
read with element size different from that used in writing

-'

.-,

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BF. i. 11 PAGE 2

the frame it is possible that the last element read from
the frame may be incomplete. If this occurs, the last
element will be transmitted with trailing binary zeros
to form a complete element, and a status indication that
this has occurred \JIJi 11 be given. However, it seems 1 ike 1 y
that in most applications a given frame will always be
written and read with the same element size.

Random and Seauential Linear Frames

A linear frame may be attached as either a random.frame
or a sequential frame. (The primitives for handfing sequential
linear frames are discussed in section BF. 1.12; those
for random linear frames in section BF.1.13.) !fit is
attached as a random frame, a read or write call specifies
the element to be read or written by element number.
If, however, the frame is attached as a sequential frame,
a read or write call specifies the element to be read
or written by an increment to the current element nu~ber
(e.g. 11 read starting with the tenth element after the
current element 11). The same frame may be attached as
both a sequential and a random frame, at different times.
Any frame which may be attached as a random 1 inear ·frame
could instead be attached as a sequential linear frame;
ho\JIJever, the converse does not hold. In order for a frame
attachable as a sequential linear frame to be attachable
also as a random linear frame, the frame must either be
a file system frame or else reside on a medium capable
of being randomly accessed. In particular, a frame resident
on a user-owned magnetic tape cannot be attached as a
random frame. If, however~ the content of the tape frame
is copied into the file system, or onto a random-accessible
medium, such as data disc, the copy may then be attached
as a random frame.

When a new frame is created and attached as a linear frame,
it contains no data, and its length is o. After the first
successful write call it contains as many elements as
the element number of the last element written. This
will be at least.as many elements as the number which
the write call requested to be written, but may be more
than that. If, for example, the ne\-il frame was ·attached
as a random linear frame, and suppose the first call after
creation requested writing of six elements starting with
element number 405. Then after return from the write
call the frame will be 410 elements long, and the content
of the frame vii 11 be 404 elements of binary zeros, follo\JIJed

•

-'

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1.11

by the six elements that were written. A read call can
successfully transmit any or all of elements 1 to 410~

PAGE 3

but a read cannot transmit elements \rJ5.th element numbers
greater than 410; an attempt to read elements with higher
numbers will cause an appropriate status return indicating
that the elements were not transmitted. An end-of-frame
condition ·)s always considered to exist just beyond the
last element written; this ''running" end-of-frame can
always be extended by subsequent write calls until the
declared maximum length of the frame is reached. At that
point an attempt to write beyond the declared maximum
length will return an end-of-frame status. Write calls
subsequent to the first may (provided the frame has been
declared rewriteable) over-write elements already in the
frame as well as extend the frame. If the frame is not
rewriteable and the first successful write call places
data in elements numbered 405 to 410~ then subsequent
write calls cannot write data into any of the elements
numbered 1 to 410. In addition~ if that first write state­
ment wrote a zero element into element number 405~ a sub­
sequent read call could not distinguish the zero element
in element number 405 from the zero element number 404.
That is~ the I/0 system will not distinguish in any way
on subsequent reads or writes betvJeen zero elements inserted
to fill holes and zero elements transmitted to the frame
as data.

Size of Linear Frames

Any linear frame attached to a process has a length (which
may~ of course~ be zero). The maximum length may be ex­
plicitly declared by a bounds call after the frame is
attached; if it is not so declared~ a default declaration
will apply. The default declared maximum length of a
linear frame is the larger of

a).

b)

the largest number of elements of the declared
element size which can be contained in 36x218
bits~ or

the number of elements of the declared element
size required to contain the existing data in
the frame.

If an explicit declaration of maximum length is given~
the declared maximum length must be at least one element
and must be at least enou~h el~ments of the declared element
size to contain the exist1ng data in the frame. The declared

-·

·-
fvlUL TICS S YS TH1-PROGRAfvitiiERS 1 MANUAL SECTION BF.1.11

maximum size may not be more than the number of entire
elements which can be contained in 36x224 bits, unless

•

PAGE 4

the frame is a non-insrdtable sequential frame, in which
case the limit is 36x2 . If a write would result in
increasing. the length. of the frame to more than the current
declared m~ximum length·, transmission will not occur,
and an appropriate status return will occur.

The Bounds Call and the Sizes Call

Explicit declaration of the element size and maximum frame
size of a linear frame is made by the bounds call, whose
general form is: ·

call bounds(name,eltsiz,filsiz[,recsiz,recnos[,status]))

If bounds calls are to be effective_.for a frame, they
must be given after the frame is attached, and before
the first read, vJr5.te, seek, delete, first or tail call
for the frame is executed. The argument ~ is a character
string of 1 to 31 characters. Its content is either a
streamname or a frame id. If ~ is a streamname, it
refers to the frame to which the stream is attached.
The arguments eltsiz, filsiz, recs}z and recnos are 35
bit signed integers. If eltsiz"> 0, it is taken to be
the declared element size for the frame. !f eltsiz =
0 or is null, the element size is not declared by the
call. Eltsiz may not be less than zero. If filsiz >
0, it is taken to.be the declared maximum size of the
frame, in elements. If filsiz = 0 or is null, the maximum
frame size is not declared by the call. Filsiz may not
be less than zero. The arguments recsiz and recnos are
ignored in bounds calls for linear frames. The argument
status is a bit string returned by the I/0 system, and
is described in section BF.1.21.

Eltsiz and filsiz for a given frame may be explicitly
declared in the same bounds calls, or in different bounds
calls. However, only the first expl ic:tt declaration of
eltsiz and filsiz will be effective. For example,

call bounds('alpha 1 ,36,500)

is equivalent to

call bounds('alpha 1 ,36,0)
call bounds('alpha 1 ,0,500)

FIUL TICS S YS TH1-PROGR.i'}J1MERS 1 tv' •. 4NUAL S E C T I ON B F • 1 • 1 1

and also to

call bounds(1alpha' ,0,500)
call bounds('alpha',36,0)

•

PAGE 5

All of these declare the element size to be 36 bits (1
word) and the maximum size of the frame to be 500 elements
(500 \"lords). Another· equivalent result is

call bounds('alpha',36,0)
call bounds('alpha 1 ,18,500)

In this case the argument eltsiz = 18 in the second call
is ignored; the element size has already been declared
to be 36. Conversely,

call bounds(1alpha 1 ,.18,500)
call bounds('alpha',36,0)

i~ not equivalent to the previous case; in this case alpha
is declared to have element size 18 and maximum frame
size 500.

The bounds call sets the maximum size of a frame but it
is often-aesirable to know the current size of an existing
frame. The actual size of a frame.may be determined by
the s :tzes call, whose genera 1 form is: .

call sizes(name,eltsiz,filsiz(,recsiz,norecs[,status]])

The arguments name and status are the same as the corresponding
arguments of the bounds call. The arguments eltsiz, filsiz,
recsiz and norecs are 35 b5.t signed integers. The values
of these arguments at call time are ignored by the I/0
system. On return, eltsiz contains the explicitly declared
element size, if an explicit declaration of element size
has been giyen for the frame; if not, the value 9 is re­
turned~· On return, the value of filsiz is the number
of elements of size eltsiz required to contain the data
currently in the frame. The values of recsiz and norecs
are unchanged by a call to sizes· for a linear frame.

A call to sizes for a given frame may be made at
between attachment and detachment of the frame.
following attachment of an existing linear frame
the sequence

call bounds('alpha 1 ,36~0)
call siz~s('alpha',j,kJ
call bounds('alpha',O,k)

any time
For examP.le,
as alpha,

MULTICS SYSTEM-PROGR4MMERS 1 MANUAL SECT! ON 8 F. 1 • 1 1 P~GE 6

declares the element size of alpha to be 36 bits 1 and
the maximum frame size to be exactly enough 36 bit elements
to contain the data already in the frame. Observe that
sizes merely returned the current length 1 as some multiple
of 36; the original maximum length might have been greater
or in terms of some other element size •

•

