MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1.18 PAGE 1
Published: 9/2/66

Identification

Frames with Complex Structure
J. F. Ossanna, V. A. Vyssotsky, G. G Zleg]er

urpose

This section describes the general structure of frames
and subframes in Multics I1/0, and discusses the methods
for using structured frames.

iscussion

As has been observed in preceding subsections of section
BF.1, each frame attached to a process may be regarded

as a sequence of items, and each such frame at any given
moment has a current item number. For any frame (e.g.
alpha) attached to the process, one may regard the current
item number as specifying a frame of data (e.g. beta),
consisting of the current item of the containing frame

This arrangement may be declared to the I/0 system by

call attach('Beta','item‘,'a]pha‘)

After this attach call, then at any subsequent time the

frame beta is the item of alpha which is the current

item of alpha at that time. If the current item rnumber

of alpha changes, the new current item of alpha is automatically
attached as frame beta (and, of course, the old current

item of alpha is detached as frame beta). For example,

if alpha is a random sectional frame, then following

the attach call shown above, the seek call

call seek('alpha', 3)

will attach record 3 of alpha as frame beta. If the
next call is

call seek('alpha',7)

record 7 of alpha will be attached as frame betd,- in
place of record 3.

Subframes may themselves have subframes, If, for example,
beta has been attached as the current item of alpha,
the current item of beta may be attached as frame gamma
by

call attach('gamma','item', 'beta')

Suppose this has been done, and suppose al]lthree frames

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTICON BF.1.18 PAGE 2

are random. We shall illustrate the relationship between
item numbers in the various frames by an example. To

the right of each call in the following sequence is shown
the current item numbers in alpha, beta and gamma on
return from the call

cin alpha cin beta cin gamma

call seek('alpha',3)
call seek('gamma',6)
call seek('beta' 4)

call seek('gamma',6)
call seek('alpha' 9)

WWWWW

Any call which changes the current item number in alpha
automatically detaches and reattaches beta and gamma,

and therefore sets the current item numbers of beta and.
gamma to 1. Likewise, any call which changes the current
item number in beta automatically detaches and reattaches
gamma, and thereby sets the current item number of gamma
to 1. We shall not pyramid our example further; however,
it is worth observing that we could if we wished, attach
the current item of gamma as a frame named sam, and so
on.

The relationships between the various frames in such

a hierarchy, and the restrictions on them, must be well
understood., We shall specify these relationships in
terms of frames sam and henry, where henry is the current
item of sam. We will not say whether sam is the current
item of any frame, nor whether the current item of henry
is attached as a frame. Our statements hold independent
of these considerations. First, if sam is random, henry
may be random or sequential. If sam is sequential, henry
may be random or secuential. Henry may be attached as

a random frame even though sam was constrained to be
sequential. More generally, the current item of any
frame may be attached as a random frame, even though

the containing frame resides on a secuential medium.
Next, henry has the trait readable if and only if sam

has the trait readable; henry has the trait writeable

if and only if sam has the trait writeable. Henry may
be declared rep051tlonab1e whether or not sam is rep051tlonable,
however, if sam is repositicnable then henry is also
rep051Llcnab]e.

If sam is linear, henry is linear. In this case, the
maximum size of henry is the element size of sam. The
elemzant size of henry need not have any particular relation-
ship to the element size of sam. However, if the element
size of sam is not a multiple of the element size of

7/~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1.18 PAGE 3

henry, the last element of henry is incomplete; it will be
transmitted as an incomplete element on reading or writing.
If sam is sectional, it is possible for henry to be either
sectional or linear. However, a frame is either sectional
or linear, depending on the data in the frame. Hence,

if the current record of sam was written as a linear

frame or by a write call for sam, then henry is linear,

If the current record of sam was written as a sectional
frame, then henry is a sectional frame. These statements
hold even if the number of bits of data in the current
record of sam is zero. If a read call for henry is to
succeed, henry must be attached as a linear frame if

the data in the current record of sam is linear; henry
must be attached as a sectional frame if the data in

the current record of sam is sectional. If henry is
attached as a linear frame and the data in the current
record of sam is sectional, or vice versa, a read or

find call for henry will be treated as if henry had never
been written. A write or delete call for henry in this
situation will cause deletion of the current record of

sam (and, if sam is in truncation mode, all following
records of sam) followed by writing of henry as a linear
or sectional frame according to the way henry is attached.
In short, if the attachment of henry does not agree with
the data in henry about whether henry is linear or sectional,
I/0 calls act as if henry contains no data, and execution
of a write or delete call destroys any data there was

in henry.

The truncation and replacement modes for subframes work
as follows. If sam is in truncation mode, a write or
delete call for henry causes truncation of sam even if
henry is in insertion mode., 1If sam is in replacement
mode, a write or delete call for henry acts as a replacement
in sam even if henry is in truncation mode. Within henry
itself, write and delete calls cause truncation of henry
or replacement into henry exactly as if henry were an
independent frame, except in one case. If sam is a linear
frame (and so henry is also a linear frame), and if sam
is in replacement mode and henry is in truncation mode,
and if henry is not the last element of sam, then a write
or delete for henry which would normally cause truncation
of henry will instead cause the elements of henry which -
would normally be discarded to be replaced by binary
zeros. This case arises because a truncation of henry
would imply a truncation of sam, an error since sam was
stated to be in replacement mode and a linear frame,
Similarly, if henry is the last element.of sam, and is
shorter than sam, writing or deleting of any element

of sam beyond henry will cause henry to be extended by
enough binary zeros to make its length the same as the
element size of sam.

MULTICS SYSTEM-PROGRAMMERS' MANUAL ~ SECTION BF.1.18 PAGE &

An _EFxample

Let us consider as an example the problem of programming
a PL/1 procedure to make a copy of an arbitrary data
frame kept in the file system. The procedure is to be
called by:

call copy(oldfile,newfile,state)

where oldfile and newfile are character strings; oldfile
is the name of a readable file in the file system, and
newfile is the name to be given to the copy to be created.
State is a bit string of length 72. In our example we
shall simplify error handllng by pa551ng the buck up

to the caller if any difficulty arises 1n copying the
file. Code to perform the copy operaticn is shown in
figure 1,

The rationale behind the code is as follows., Since the frame
to be copied has some structure which is a priori unknown,

we must determine its structure as a part of the copying
process. We do this by attaching the frame without specifying
whether it is to be attached as a linear frame or a secticnal
frame, and then looking at the status return to find

out whether the frame is linear or sectional. If the

frame is linear, we attach an output frame as a linear

frame, and copy the data. If, however, the frame is
sectional, we attach the output frame as a sectional

frame. Then we iterate through the records of the input
frame, treating each one as a frame of unknown structure

in exactly the same way we did the input frame on the

level above. This technique will cause recursion to

as many levels as there are levels of structure in the

data to be copied.

igure 1

copy: procedure(oldfile,newfile,status);
declare(oldfile,newfile)character(¥);
declare status bit (72);
declare (j,k,1,m,many) leed binary (35)
declare placa p01nter,
declare transit_area bit (ZBLH),
place=addr(transit_area);
call copyx(oldfile,newfile,'file',1,status);
return;

Copyx: procedure(old, new, type, 1w, state);
declare(old, new, typo)character(*)-
declare state bit (72);
declare(to, tn)character(?C}varylng,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1.18 PAGE 5

Figure 1 (Cont,)

to='to' lw;

tn='tn' lw;

call attach(to,type,old, 'Y ,state);

if substr(state,1,1) then return;

call bounds(to,1,0);

call sizes(to,j,k,1,m);

call bounds(to,0,k,1,m);

if substr(state,62,1) then go to sect;

call attach(tn,type,new,'wl’,state);

if substr(state,1,1)then go to scat;

call bounds(tn,1,k,0,0,state);

if substr(state,1,1)then go to leave;

call seek(to,0,state);

if substr(state,57,1) then go to leave;
loop: call read(to,0,place,23C4,many,state);

call write(tn,0,place,many); -

ifqsubstr(state,43,1) then go to loop;

go to leave;

sect: call attach(tn,type,new, 'ws',state);
if substr(state,1,1) then go to scat;
call bounds(tn,1,k,1,m,state);
if substr(state,1,1) then go to leave;
call find(to,0,state);

loopa: if substr(state,57,1) then go to next;
Twa=1lw+1;
call copyx(to,tn,'item',leva,state);
if substr(state,1,1) then go to leave;

next: call find(tn,1);
call find(to,1,state);
ifasubstr(state,49,1) then go to loopa;

leave: call detach(tn,new);
scat: call detach(to,o0ld);
return;
end copy;

Another Example

In the Kernel Magnetic Co. reorganizdtions and personnel
transfers are much more frequent than all other events

(such as raises) which require changes in personnel records.
As a result the company keeps its personnel records as

thre=s distinct random data frames in Multics. The basic
frame is always attached to the perscnnel process with

the name 'psople'. It contains one record for each employee,
and the number of that record is the employee's man rumber.
This contains all the personnel data relevant to the
employee, except that it cont:i’ns no information about

his position in the organization. A second frame, always

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1.18 PAGE 6

attached with the name 'nodes', contains one record for
each node on the organization chart. This record consists
of three subrecords. The first subrecord contains the

man number of the employee at this node in the chart.

The second subrecord itself consists of a sequence of
subrecords, and each of these contains the number of

a node immediately above this one on the chart. (Typically,
there 1is one node above a given node, but there may be
zero - there is no node above that occupied by the chairman
of the board; or there may be more than one- the node
representlng the comptroller is immediately below the
president, and also immediately below the chairman- of

the finance committee). The third subrecord of the 'nodes'
frame is a sequence of subrecords each of which contains
the number of a node immediately below this one on the
organization chart., The third frame of personnel data,
always attached with the name 'jobs', has one record

for each emplovee, whose record number is the man number
of the employee. This record consists of a sequence

of subrecords, each containing the node number of one

node on the organ1zaf10n chart which the given employee
occupies. Typically, the employee holds only one position
on the chart, but he may hold more than one. For example,
Joe Smith, the shop superintendent of the compressor

plant is a15u the plant manager (and therefore reports

to himself as well as to the Vice President, Manufacturing
Operations). Joe is also Vice President, Operatlons

of the semiconsolidated subsidiary Nuclecmagnetics, which
leases part of the compressor plant;. in this capacity

Joe reports to the President of Nucleomagnetics.

Now Joe Smith resigns unexpectedly. Company policy states
that the organlzatlon chart, in this case, shall be modified
to make Joe's immediate suporlor hold Joe's job until

a replacement is named. Thus, the Vice President, Manufacturing
Operations, now becomes also the plant manager and shop
superintendent of the compressor plant, and the President

of Nucleomagnetics becomes also the Vice President, Cperations
of Nucleomagnetics. Since Kernel Magretics Co. is an

old, established organizatien, such complex operations

on the organizaticn chart happsen rrequent]y In fact, :
it has been necessary to make explicit provision, in company
pollcy for the resignation of a man all of whose superiors

in one or mcre of his capacities are himself. The r851gndtion
of such a man from those capacities may not be accepted

until a replacement is appointed.

Figure 2 shows the PL/I procedure used by the perscnnel
department to cope with the resignation of an arbitrary
employee. The cperation cf the progrwm is basically
simple. It has a random freme 'part' attached as the

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1.18 PAGE 7

current item of 'nodes', and a random frame 'above' attached
as the current item of 'part'. 'Above' is also attached

with the stream name 'below' to make the name in the

source program correspond to the nature of the data being
massagecd. The procedure first reads the node numbers

of the resigning employee's jcbs from 'jobs', and then
considers them one at a time. For each job it looks

at the list of immediately superior jobs contained in

the 'nodes' entry for the job, and tried to find an immediate
superior other than the resigning employee himself.

If it succeeds, it replaces the man number of the resigning
employee, in this particular job, with the man number

of the appropriate superior, reduces the number of jobs
still held by the employee by one, and goes on to consider
his next position. If, however, the resigning employee

had no superior other than himself in one of his positions,
the procedure goes immediately to consider the next position
he holds. When it has so considered all of his positions,
the procedure asks two questions. First does the employee
still hold any positicns? If not, it deletes his entry

from the 'jobs' and 'people' frames. Second, if he still
holds positions, was he successfully released from any
positions during the scan? - If so, the scan is done again,
since the previous scan'may have provided him with an
immediate superior other than himself in some position

where he had been his only immediate superior., If, however,
a scan does not release him from any jobs, then his resignation
cannot be accepted, and his records in 'jobs' and 'people’
are retained.

Figure 2

resign: procedure(nemo);
declare nemo fixed binary (35);
declare (ta(1000),tb(1000)) fixed binary (35);
declare state bit (72) static;
declare point pointer;
call seek('Jobs',nemo);
call shift('hisjobs',ta,ma);
call delete('jobs',nemo);

na=ma;
wot: ka=0; N .,
how: do ia=1 to ma;

if ta(ia)=0 then go to bot;
call seek('nodes',ta(ia));
call seek('part',2);

call shift('above',tb,mb);

may : do ib=1 to mb; :

call seek('nodes',tb(ib));
call read('part',1,man,1);
if mana=nemo then go to fit;
end may; ‘
go to bot; ' -

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1.18 PAGE 8

Figure 2 (Cont.)
- fit: call seek('nodes',ta(ia));
call write('part',1,man,1);
ta(ia)=0;
ka=ka+1;
bot: end how;
na=na-ka;

if na=0 then go to delete;
if ka=~0 then go to wot;
retain: ja=1
gap: do ia=1 to ma;
if ta(ia)=0 then go to pig;
point=addr(ta(ia));
call write('hisjobs', ja,point,1);

ja=ja+l;

pig: end gap;
return;

delete: call delete('people',nemo);
return;

shift: procedure(from,to,many);

declare from character(¥*);
declare to () fixed binary (35);
ngot=0;
many=0;
nmany=0;
zap; many=many+ngot;
nmany=nmany +1 ;
point=addr(to(many+1));
call read(from,nmany,point,1,ngot,state);
if substr(state,45,1)='0'b then go to zap;
return;
end shift;
end resign;

