
MUL TICS SYSTEr-1-PROGRL\Mfv1ERS' MA\NUJ.L SECTION BF. 1 . 18 PAGE 1

Published: 9/2/66

Identification

Frames with Complex Structure
J. F. Ossanna, V. A. Vyssotsky# G. G. Ziegler

Purpose

This section describes the general structure of frames
and subframes in Multics l/0# and discusses the methods
for using structured frames.

Discussion

As has been observed in preceding subsections of section
BF.1# each frame attached to a process may be regarded
as a sequence of items, and each such frame at any given
moment has a current i~em number. For any frame (e.g.
alpha) attached to the process, one may regard the current
item number as specifying a frame of data (e.g. beta),
consisting of the current item of the containing frame.
This arrangement may be dec]ared to the I/0 system by

call attach('beta','item' #'alpha')

After this attach call, then at any subsequent time the
frame beta is the item of alpha which is the current
item of alpha at that time. If the current item number
of alpha changes, the new current item of alpha is automatically
attached as frame beta (and, of course# the old current
item of alpha is detached as frame beta). For example#
if alpha is a random sectional frame# then following
the attach call shown above, the seek call

ca 11 seek (1 a 1 ph a 1 # 3)

will attach record 3 of alpha as frame beta. If the
next ca 11 is

call seek('alpha' ,7)

record 7 of alpha wi 11 be attached as· frame beta#· in
place of record 3.

Subframes may themselves have subframes. If, for example,
beta has been attached as the current item of alpha,
the current item of beta may be attached as frame gamma
by

call attach('gamma', 1 item', 'beta')

Suppose this has been done, and supp9se all three frames

MUL TICS SY S TEM-PROGR.Ll.Mfv1ERS 1 ~1ANUAL SECTION BF.1 .18 PAGE 2

are random. \·Je shall illustrate the relationship bet\veen
item numbers in the various.frames by an example. To
the right of each call in the following sequence is shown
the current item numbers in alpha, beta and gamma on
return from the call

cin alpha cin beta cin gamma

ca 11 seek(1 a 1 pha 1 , 3) 3 1 1
ca 11 seek(1 gamma 1 , 6) 3 1 6
ca 11 seek(1 beta 1 , 4) 3 4 1
ca 11 seek(1 gamma 1 , 6) 3 4 6"
ca 11 seek (1 a 1 ph a 1 , 9) 9 1 1

Any call which changes the current item number in alpha
automatically detaches and reattaches beta and gamma,
and therefore sets the current item numbers of beta and.
gamma to 1. Likewise, any call which changes the current
item number in beta automatically detaches and reattaches
gamma, and thereby sets the current item number of gamma
to 1. 'tie shall not pyramid our example further; hov1ever_,
it is worth observing that ~e could if we wished, attach
the current item of gamma as a frame named sam, and so
on.

The relationships between the various frames in such
a hierarchy_, and the restrictions on them, must be well
understood. We shall specify these relationships in
terms of frames sam and henry_, where ·henry is the current
item of sam. We will not say whether sam is the current
item of any frame, nor whether the current item of henry
is attached as a frame. Our statements hold independent
of these considerations. First, if sam is random~ henry
may be random or sequential. If sam is sequential, henry
may be random or sequential. Henry may be attached as
a random frame even though sam was constrained to be
sequential. More generally_, the current item of any
frame may be attached as a random frame, even though
the containing frame resides on a sequential medium.
Next, henry has the trait readable if and only if sam
has the trait readable; henry has the trait writeable
if and only if sam has the trait writeable. Hehry may .
be declared repositionable whether or not sam is repositionable;
hovvever_, if sam is repositionable then henry is also
repositionable.

If sam is linear, henry is linear. In this case, the
maximum size of henry is the element size of sam. The
element size of henry need not hav? any particular relation­
ship to the element size of sam. However, if the element
size of sam is not a multiple of the element size of

..

•.

MUL TICS SYSTEM-PROGR.4MMERS 1 MANU.~L SECTION BF. 1 .·18 PAGE 3

henry, the last element of henry is incomplete; it will be
transmitted as an incomplete element on reading or writing.
If sam is sectional, it is possible for henry to be either
sectional or linear. However, a frame is either sectional
or linear, depending on the data in the frame. Hence,
if the current record of sam was written as a linear
frame or by a write call for sam, then henry is linear.
If the current record of sam was written as a sectional
frame, then henry is a sectional frame. These statements
hold even if the number of bits of data in the current
record of sam is zero. If a read call for henry is to
succeed, henry must be attached as a linear frame if
the data in the current record of sam is linear; henry
must be attached as a sectional frame if the data in
the current record of sam is sectional. If henry is
attached as a linear frame and the data in the current
record of sam is sectional, or vice versa, a read or
find call for henry will be treated as if henry had never
been written. A write or delete call for henry in this
situation will cause deletion of the current record of
sam (and, if sam is in truncation mode, all following
records of sam) followed by writing of henry as a linear
or sectional frame according to the "''ay h~nry is attached.
In short, if the attachment of henry does not agree with
the data in henry about whether henry is linear or sectional,
1/0 calls act as if henry contains no data~ and execution
of a write or delete call destroys any data there was
in henry.

The truncation and replacement modes for subframes work
as follows. If sam is in truncation mode, a write or
delete call for henry causes truncation of sam even if
henry is in insertion mbde. If sam is in replacement
mode, a write or delete call for henry acts as a replacement
in sam even if henry is in truncation mode. Within henry
itself, write and delete calls cause truncation of henry
or replacement into henry exactly as if henry vvere an
independent frame, except in one case. If sam is a linear
frame (and so henry is also a linear frame), and if sam
is in replacement mode and henry is in truncation mode,
and if henry is not the last element of sam, then a write
or delete for henry which would normally cause t.r.uncation
of henry will instead cause the elements of henry which
"''ould normally be discarded to be replaced by binary
zeros. This case arises because a truncation of henry
would imply a truncation of sam, an error since sam \Mas
stated to be in reQlacement mode and a linear frame.
Similarly, if henry is the last element of sam, and is
shorter than sam, writing or deleting of any element
of sam beyond henry will cause henry. to be extended by
enough binary zeros to make its length the same as the
element size of sam.

. .
•

MUL TICS SYSTEM-PROGRAMfvlERS 1 MANUAL SECTION BF.1 .18 PAGE 4

An Examole

Let us consider as an example the problem of programming
a PL/I procedure to make a copy of an arbitrary data
frame kept in the file system. The procedure is to be
called by:

call copy(oldfile 1 newfile 1 state)

where oldfile and newfile are character strings; oldfile
is the name of a readable file in the file system~ and
newfile is the name to be given to the copy to be c-reated.
State is a bit string of length 72. In our example we
shall simplify error handling by passin~ the buck up
to the caller if any difficulty arises 1n copying the
file. Code to perform the copy operation is sho~;~m in
figure1.

The rationale behind the code is as follows. Since the frame
to be copied has some structure which is ~ oriori unknown,
we must determine its structure as a part of the copying
process. We do this by attaching the frame without specifying
whether it is to be attached as a linear frame or a .sectional
frame, and then looking at the status return to find
out whether the frame is 1 inear or sectional. If the
frame is linear, we attach an output frame as a linear
frame, and copy the: data. If, however, the frame is
sectional~ we attach the output frame as a sectional
frame. Then we iterate through the records of the input
frame, treating each one as a frame of unknown structure
in exactly the same way we did the input frame on the
level above. This techniaue will cause recursion to
as many levels as there are levels of structure in the
data to be copied.

copy:

copyx:

•

£igure 1

procedure(oldfile,newfile,status);
declare(oldfile,newfile)character(*);
declare status bit (72);
declare (J,k~l~m,many) fixed binary (35);
declare place pointer; ·
declare transit_area bit (2304);
place=addr(transit_area);
call ccpyx(oldfile,newfile,'file',1,status);
return;

prccedure(old,new,type,lw,state);
declare(cld,new,type)character(*);
declare state bit (72);·
dec1are(to,tn)character(1C)varying;

..
•.

MULTI CS SY S TEM-PROGRLIMMERS 1 MANUAL SECTION BF.1 .18 PAGE 5

loop:

sect:

loopa:

next:

leave:
scat:

to= 1 to' lw;
tn='tn' lw;

F i au re 1 (Cont.) .

call attach(to~type,old~'Y' ,state);
if substr(state,1,1) then return;
call bounds(to~1 ,0);
ca 11 sizes (to, j , k, 1 , m);
call bounds(to,O,k, l,m);
if substr(state,62,1) then ~o to sect;
call attach(tn~type,new,'wl ,state);
if substr(state,1 ,1)then go to scat;
call bounds(tn, l,k~O,O,state);
if substr(state~ 1, l)then go to leave;
call seek(to,O,state); .
if substr(state,57,1) then go to leave;
call read(to,O,place,2304,many,state);
call write(tn,O,place,many);
if,substr(state~49,1) then go to loop;
go to leave;

call attach(tn,t~pe~new,'ws'~state);
if substr(state~1 .. 1) then go to scat;
call bounds(tn, l,k, l,m,state);
if substr(state, 1, 1) then go to leave;
call find(to,O,state);
if substr(state,57, 1) then go to next;
lwa=l\111+,;
call copyx(to,tn,' item' ,leva, state);
if substr(state, 1, 1) then go to leave;
ca 1 1 f i n d (t n , 1) ;
call find(to, l,state);
if,substr(state,49, 1) then go to loopa;

call detach(tn,new);
call detach(to,old);
return;
end copy;

Another Examole

In the Kernel Magnetic Co. reorganiz~tions and ~ersonnel
transfers are much more frequent than all other events
(such as raises) which require changes in personnel records.
As a result the company keeps its personnel records as
three distinct random data frames in Multics. The basic
frame is ah-Jays attached to the personnel process \rJit:h
the name 'people'. It contains one record for each employee,
and the number of that record is the employee's man number.
This contains all the personnel data relevant to the
employee, except that it cont~'ns no information about
his position in the organization. A_ second frame, ah·Jays

MULTICS SYSTEM-PROGR~~MERS' MANUAL SECTION BF.1 .18 PAGE 6

attached with the name 'nodes'~ contains one record for
each node on the organization chart. This record consists
of three subretords. The first subrecord contains the
man number of the employee at thls node in the chart~
The second subrecord itself consists of a sequence of
subrecords~ and each of these contains the number of
a node immediately above this one on the chart. (Typically~
there is one node above a given node~ but there may be ·
zero - there is no node above that occupied by the chairman
of the board; or there may be more than one- the node
representing the comptroller is immediately below the
president~ and also immediately below the chairman·of
the finance committee). The third subrecord of the 'nodes'
frame is a sequence of subrecords each of which contains
the number of a node immediately below this one on the
organization chart. The third frame of personnel data~
always attached with the name 'jobs'~ has one record
for each emp 1 oyee ~ whose record number i.s the man number
of the employee. This record consists of a sequence
of subrecords~ each containing the node number of one
node on the organization chart which the given employee
occupies. Typically~ the employee holds only one position
on the chart~ but he may hold more than one. For example~
Joe Smith~ the shop superintendent of the compressor
plant is also the plant manager (and therefore reports
to himself as well as to the Vice President~ fVlanufacturing
Operations). Joe is also Vice President~ Operations~
of the semiconsolidated subsidiary Nucleomagnetics, which
leases part of the compressor plant;. in this capacity
Joe reports to the President of Nucleomagnetics.

Now Joe Smith resigns unexpectedly. Company policy states
that the or~anization chart, in this case~ shall be modified
to make Joe s immediate superior hold Joe's job until
a replacement is named. Thus~ the Vice President, fv1anufacturing
Operations, now becomes also the plant manager and shop
superintendent of the compressor plant, and the President
of Nucleomagnetics becomes also the Vice President, Operations
of Nucleomagnetics. Since Kernel Magnetics Co. is an
old, established organization, such complex operations
on the organization chart happen frequently. In fact,
it has been necessary to make explicit provisior in company
~olicy for the resi~nation ~f.a man al~ of whose"super~ors .
In one or more of his capacLties are himself. The res1gnat1on
of such a man from those capacities may not be accepted
until a replacement is appointed.

Figure 2 shows the PL/I procedure ~sed by the personnel
department to cope with the resignation of an arbitrary
employee. The operation of the p~ogram is basically
simple. It has a random frame 'part' attached as the

...

•.

MULTICS SYSTEM-PROGRAI'v1f~ERS' MANU . .\L SECTION BF.1 .18 PAGE 7

current item of 'nodes'~ and a random frame 'above' attached
as the current item of 'part'. 'Above' is also attached
with the stream name 'below' to make the name in the
source program correspond to the natur~ of the data being
massaged. The procedure first reads the node numbers
of the resigning employee's jobs from 'jobs'~ and then
considers them one at a time. For each job it looks
at the list of immediately superior jobs c6ntained in ·
the 'nodes' entry for the job~ and tried to find an immediate
superior other than the resigning employee himself.
If it succeeds, it replaces the man number of the resigning
employee~ in this particular job, with the man number
of the appropriate superior, reduces the number of jobs
still held by the employee by one, and goes on to consider
his next position. If, however, the resigning employee
had no superior other than himself in one of his positions,
the procedure goes immediately to consider the next position
he holds. \·Jhen it has so considered all .of his positions,
the procedure asks two questions. First does the employee
still hold any positions? If not, it deletes his entry
from the 'jobs' and 'people' frames. Second, if he still
holds positions, was he successfully released from any
positions during the scan?· If so, the scan is done again,
since the previous scan·may have provided him with an
immediate superior other than himself in some position
where he had been his only immediate superior. If, hovJever,
a scan does not release him from any jobs, then his resignation
cannot be accepted, and his records in 'jobs' and 'people'
are retained.

resign:

wot:
hO'JJ:

may:

Figure ?

procedure (nemo);
declare nemo fixed binary (35);
declare (ta(1000),tb(1000)) fixed binary (35);
declare state bit (72) static;
declare point pointer;
call seek('~obs 1 ,nemo);
call shift(hisjobs' ,ta,ma);
call delete('jobs' ,nemo);
na=ma;
ka=O;
do ia=1 to rna;
if ta(ia)=O then go to bot;
call seek(1 nodes 1 , ta(ia));
ca 1 1 seek (1 part 1 , 2);
call shift('above' ,tb,mb);
do ib=1 to mb;
call seek('nodes' ,tb(ib));
call read('part 1 , 1,man,1);
if man~=nemo then go to fit;
end may;
go to bot;

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION SF .1 •. 18 PAGE 8

fit:

bot:

retain:
gap:

pig:

delete:

shift:

zap;

•

Figure 2 (Cont.)

call seek('nodes',ta(ia));
call write('part' ,1,man,1);
ta(ia)=O;
ka=ka+1;
end how;
na=na-ka;
if na=O then go to delete;
if ka=,o then go to wot;
ja=1
do ia=1 to ma;
if ta(ia)=O then go to pig;
point=addr(ta(ia));
call write('hisjobs' ,ja,point, 1);
ja=ja+1;
end gap;
return;
call delete('people' ,nemo);
return;
procedure(from,to,many);
declare from character(*);
declare to (*) fixed binary (35);
ngot=O;
many=O;
nmany=O;
many=many+ngot;
nmany=nmany+1;
point=addr(to(many+1));
call read(from,nmany,point,1,ngot,state);
if substr(state,49,1)~'0'b then go to zap;
return;
end shift;
end resign;

...

_.

