TO: MSPM Distribution

FROM: P. G. Neumann ,

SUBJECT: BF.2.22, The Registry File Maiﬁtainer
DATE: 03/01/68

The attached BF.2.22 is a major revision of the former issue, 08/14/67.

Many of the calls have been redesigned, although the module is functionally
the same.

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.22 Page 1

"Published: 3/
ldentification (Supersedes: BF.2.22 08/14/67

The Recistry File Maintainer
S. 1. Feldman

Purpose

Fvery 1/0 device known to a system has an associated file called
its Rezistry File (RF). The Registry File Maintainer -(rRFM) s
called by outer modules and other interested users to get
information from or to store information into a Registry File.
This section describes the functions of Registry Files, describes
the calls to the RFM and the implementation thereof.

Rexistry Files

Protection of all 1/0 devices is implemented by file systen
protection of their Registry Files. Non-volatile infornition
about the device is stored in this file for wuse by the 1/0
System. The following is a brief discussion of the form,
content, and use of these files.

The RFs are organized by type of device into '"type'" directories.
These type directories are immediately inferior to the Registry
File Directory (path name ">rfd"). A Regzistry File is identified
by two 32-character strings, called the "type" and the '"name'.
The type is the entry name of the type directory in the Registry
Tile Directory; the name is the entry name of the RF in its type
directory. In addition to the regular RFs, these type
directories also contain certain other files: an |/0 Assignmnent
Table (10AT), normally accessible from the hardcore ring only by
the 1/0 Assisnment Module (10AM); see BF.2.26). This table lists
names of the users who possess and control the file and its
associated devices at any time. There may be several read-only
files in the directory for wuse in storing certain critical
PRF-related information that cannot be left in the normal RFs for

security reasons. Finally, there are usually one or more noral
Registry Files called prototype RFs. These files are used tu

created new RFs of the given type.

The normal RFs are made up of several distinct parts. The first
is of standard form and content. This part of the RF is used by
the Attachment Module (see BF.2.23) and the Registry File
Maintainer (RFM; see below). This fixed part has information on
the RF, and has "pointers'" to <certain RFs. (These pointers
consist of the type and name of the target RF). Each RF has a
"level" number associated with it. The smaller the level number,
the more directly related the device is to the GIOC. Thus, a
typewriter channel has level equal to 1, while the typewriter has
- level equal to 2. '"Down" is defined to be the direction of
decresasing level numbers. The up and down chaining represents
the connections between devices. A file may point to more than

one un and one down RF, although this is not the usual case.

Page 2 MULTICS SYSTEM PROGRAMMERS' MANUAL SFCTION RF.2,22

Some of these 1links between RFs are permanent, representing
physical wiring. Others are transient, and change with the
confizuration or for other reasons. See below for "a discussion
of logical channels. As an example of a temporary 1link, a
typewriter is associated with a channel only while it is dialed
in. The association is broken when it hangs up. The following
is a plausible RF arrangment for tapes: The level 4 RF
represents a tape reel. There is a temporary association (down
link) with the level 3 RF for the tape drive upon which the reel
is presently mounted. There is also a temporary up link from the
drive to the reel file. There is a permanent link down from the
level 3 drive RF to the level 2 controller RF. There are many
permanent up links from the controller, one for each of the
drives connected to it. There are also some temporary down 1links
from the level 2 controller file to the level 1 files for the
High Performance Channel RFs. There is a temporary up link from
each of these channel files to the appropriate controller file.
The association between controller and channel can be changed by
using the peripheral switch; any modification will be reflected
in the Device Configuration Table. (See the discussion of
logical channels.)

The fixed part of the RF contains, in addition to names of RFs in
the chain, information to guide the Attachment Module in
following the list. There is also information on the type of DCM
to he used, and part of the mode string to be passed to that DCM,

A RF has at least one device associated with it. If several
devices are closely related, they may be considered as a single
resource and may therefore share a single RF. For example, a

full=-duplex typewriter channel can be implemented by connecting
two half-duplex typewriter GI0C channels to a single data set.
There would be a single RF for the pair of channels, but there is
information on hoth devices separately in the RF.

Fach device has a "device profile" in the RF. Once the size is
set (either when the RF is created or when the first

rfm¢set profile call is made), it does not change. . This profile
is meant to contain relatively constant physical device

information. For example, the tab settings of typewriters will
be stored in the profile. However, data as changeable as the
line and column number are not stored in the profile. A tape
profile mizht include information on density and the nanes of
other recels that make up a single multi-reel file.

In addition to the profile, there is a behavior 1log for each
davice. This log wuswally contains information on faulty
performance by the device. Whenever such a thing happens, the
appropriate 1/0 System module callsv rfm$add lo to store this
information at the end of the chain of log entries. Each log
entry contains the identification of the process and wuser in
control, the time, and an arbitrary bit string supplied by the
caller. The loz can he read and entries can be deleted bhy
annpropriate calls to the RFM, The log itself is a chained li§

|

t
nf structures, = ing a relative pointer to the next n

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION 3F.2.22 Page >

the list. The fixed part of the RF contains a relative pointer
to the first and last blocks on the chain. :

At some installations, the assocation between certain devcies and
certain GIOC channels may depend upon the settings of the
peripheral switch. Registry Files have the ability to handle
such a connection. When the Attachment Module finds that the
"logchans'" bit is on in the RF, it calls a hardcore supervisor
procedure, the Device Configuration Table Manager, which will
translate a "logical channel'" name stored in the RF to the rea’
RF name. The Attachment Module then stores that .information in
the RF and proceeds as if that were the down name stored in the
NF normally.

Above, we mentioned the existence of certain special read-only
files in the type directories, These files contain information
relating to Universal Device Manager processes. Such a process
is a system process that can handle several devices of a given
type., The Attachment Module needs to know the process group id
of the relevant UDMP and also the name of a certain data base
used by the process, called its PDT. This information is placed
~in the special read-only file. Only certain types of RFs require
these files. These are the last RFs examined by the Attachment
Module while it traces through a chain of files. Typically, that
file represents the channel or controller. For the RF with name
"X", there is a file with name "X_ro" in the same type directory.
Since several devices can use the samne read-only file, a single
file will most likely have several names.

Nnegistry File Declaration

The following is the EPL declaration for a Registry File. The
first two declarations, rf and rfx, together form the fixed part
of the RF discussed above; there are two parts for implementation
reasons.. The third declaration, rf_ro, is the special read-only
file which exists for reasons of system security.

dcl 1 rf based(rfp), ~
2 level fixed bin(35), /*level=1 for a Gl1QC channel, 2 for
' " a device connected directly to

a (10C channel, etc.*/

. n
2 force_udmp bit(1l), /*if 1, force the use of a universal

" ‘ device manager process*/

2 in_use_switch bit(36), /*set ON at attach time and OFF
" v at detach timex/

2 hancupable bit(1), /*1f ON, device can hang up*/

2 loqchans bit(1l), /*if ON, the down_names for this

device are to be filled in by a call

to the hardcore ring to zet the present
RF name corresponding to the logical
channel names, If this bit is ON,

" - no more RFs are to be searched.*/
2 allocate bit(1)}, - /*if Oi, Reserver should be called

Page

N

NIV NN

NN

/*

*/
del

L MULTICS SYSTEM PROGRAMMERS'

"

temp_link bit(1),
"

nup fixed hin(35),

ndown fixed bin(35),

ndev fixed bin(35),

ntypes fixed bhin(35),

nresent_type_
"

down_slot fixed bih(35),
n

alloc_ﬁype char(32),

lock bit(1l4y),
1

1"
up(rfp=>rf.nup),
3 uptype char(32),

3 upname char(32),
devices(rfp=->rf.ndev),
"o,

3 resource_name char(32),
"

3 profile_relp bit(18),

3 profile_length fixed bin,
3 oldest_los_relp bit(18), /*relp to oldest entry
3

index fixed bin(35),

with each resource_name as argument,*/
/*connection with next file

temporary,

MANUAL SECTION BF.2.22

is

Rlank out down_name

entries upon detachment#*/

/ *number of
/*number of
/*number of
/*number of

/*index

in up array*/
in down array=/

entries
entries
entries
entries
in att_types array of

type with which device was last

attached*/

/*position of upname for this file
in up array of next registry ftilex/

/*use this type

in calls to the

Reserver alloc$resource

entryx*/

/*for locking RF when threading
or deletlng wehavior log entrlgb or

modifying

/*registry files pointing to this onex/

the profile.*/ -

/*entries for devices associated

with this
/*name used

registry filex/
in calls to the Reserver

and the Device Assignment Modulex/
/*relp to device profile for this

devicex*/
/ *number

of bits in this profilex/

newest_log_relp blt(18), /*relp to most recent entry in

3 nlog fixed hin,

hehavior 1
/ *number of

3 device_type fixed bin(35),
_ /*relative pointer to RF extension*/
free_storace area((15000));

rfxrelp bit(18),

1 rfx based(rfxp),

att typeb(rfp >rf.ntypes),/*special

3 type_name char(32),
3 cem_type char(32),
(1]

3 trace_down bit(1l),
T
3 al]os_down bit(l),

information for each

og*/

entries in behavior logs*/

type

by which this device may be known*/

/*name of code conversion driving
table to be used*/

/*if ON,
file.

trace down to next regispry
Otherwise,
/*if ON, must call

stop herex*/
Reserver to

allocate a device of type

down_type,

resource_name as

and use returned
down_name(1).

in devices array*/
in att_types array*/

)

“N

in behavior log*/

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2,22 Page 5

" In either case, find next RF by

using down_type and down_name(1l)*/
3 look_only bhit(1l), /*keep tracing down to other RFs

" under trace_down control, but
only to compute code conversion
driving table nanex*/
down_type char(32), /*used as described above*/
down_name(rfp->rf.ndown) char(32), /*used as described above*/
logical_channel (rfp->rf.ndown) char(32), . /*array of

" names to be used in call to get present

equivalent RF name from

" info in DCT. Used only if the

" : logchans bit is on#/
3 extra_mode char(32), /*character string to be

" concatenated with mode to be

" passed to DCM=x/
3 dem_type char(32), /*used as type in attach call to

" DCM if trace_down is OFF or

" look_only is OMNx/
3 dem_name char(32); /*used as ioname2 of attach call to

" DCM if trace_down is

" OFF or look_only is 0i's/

W AW W

*/

de1 1 rf_ro bhased(p), /*special Registry File. There is a
" file of this format associated with
" each regular RF, with name cqual to
" the name of the normal RF concatenated
" with "_ro". This file contains
" ~certain data that must be protected
" against taupering and is therefore
" read-only to most users.,*/

pdt_name char(32), /*name of POT in DMP*/

udnp_user_id char(50); /*user_id of universal device wmanazer

- for this device, if anyx*/

NN

Calls and Arzuments

call rfmjeet_devices(type,name,device_types,resource_names,cstatus);

call rfm$set_profile(type,name,devnunber,dataptr,nbits,cstatus);

call rfmsset_prefile(type,name,devnumber,dataptr,nbits,cstatus);

call rfmseet_nlog(type,name,nlogs,cstatus);

call rfms$add_lo~(tyne,name,devnumber,dataptr,nbhits,cstatus);

call rfm$delete_loc(type,name,devnumber,first,nunhber,cstatus);

call rfm$read_logz(type,name, devnumber flrst number,«nfootr cstatus)

call rfmS$eet_ uns(type,name, uptypes upnames, nrhturnoJ cstatus)

call rfmscet_down(type,name,down_type,down_names,cstatus);

call rfm$link(toptype,topname,att_type_index,down_index,
Hottomtyoe hottomname, uplndex cstatus);

dnclare

Paze b MULTICS SYSTEM

type char(x),

naine char(x),
toptype char(x),
tonname char(x),
Hottowtype char(x),

hottomname char(=*),
drvnumber fixed hin,
"

Jatantr ntr,
1"

nbit§ fixed bin,

first fixed bin,
11)
11

numbﬁr fixed bin,

device_types(*) fixed bin,
"

resource_names(*) char(32),
n

infoptr ptr,

PROGRAMMERS' MANUAL SECTION BF.2.22

/*type of device*/

/*name of devicex*/

/*type of device with larger level numbe‘\/

/*name of that devicex/

/*type of device with snmaller level
numher=*/

/*name of that devnce*/
/*index in devices array for
this devicex/
/*pointer to bit string of
length nbits into which profile
is to be stored or from which profile
or log entry is to he copied*/
/*number of bits in bit string.
abovex*/
/*index of first behavior log entry
‘(starting from the oldest) which
is to be read or deleted*/
/*how many log entries are to be
read or deleted*/
/*array into which device types are
to be stored*/ _
/*array into which the resource namnes
are to be stored
/*pointer to the following structurex*/

See

1 info(number) based(infoptr),/*array of structures which will

"time fixed bin(71),
Rroc_id bit(36),

NN

user_id char(50),
nhits fixed bin,
dataptr ptr,
untypas(*) char(32),

uonames(*) char(32),
nloes(*) fixed bin,
"n
down_type char(x),
down wame(*) char(32),
down_index fixed bin,
"

up_index fixed bin,
1

DN N

nreturned fixed bin;

Implementation of Calls

get devices

- This call
ranes from a given RF.
steps are talen:

is made to get a list of
In response to the

contain information on the behavior
log entries.
tells the RFM how many to read out=/

/*time when RFM stored log entryx*/

/*process id of caller when RFM stored
log entryx/

/*user id of above user+*/

/*number of bits in log entryx*/

/*pointer to the log entry*/

/*1ist of uptypes for the RF=*/

/*1ist of upnames for RF=*/
/*1ist of number of behavior log

entries for each devicex*/

/*down type for RFx/

/*1ist of down_names*/

/*index in down_name array where
down_name is to be stored*/

/*lndex in upnames array where up_ type
and up_name are to be stored*/

/*number of upnames returned*/

types and resource
the following

call,

device

The length of this array-ey

~

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.22 Page 7

1. If the RF with type type and name name is non-existent, set
hit 1 of cstatus and return, If the file is not readable by this
user, set bit 8 of ¢cstatus and return.

2. Store as inany device_types as possible in the device types

array. |If there are more in the RF, set bit 18 of ¢status. It
the array is larzer than the array in the RF, fill in the

remaining elements with zeroes.

5. Store as many resource names from the RF into the
resource names array as possible. If there are wore in the RF,

set bit 18 of cstatus. |If the array is larger than the array in
the RF, fill in the remaining elements with blanks.

4., Return.

set profile

‘This call is used to store a device profile. In responsc to the

call, the following steps are taken:

1. Find the RF with the given type and name. |If the file does

not exist, set hbit 1 of cstatus and return. |If the file 1is not
raadable by this user, set bit 8 of ¢gstatus and return, I the

file is accessible but not writable by this wuser from the

‘caller's validation level, set bit 4 of cstatus and return.

2. Lock the RF using rf.lock as a lock structure.

3. | f devnumber if less than one or greater than rf.ndev, set
it 2 of ¢status, unlock the RF, and return. '

L. If the above arguments are all right, then if
rf.devices(devnumber).profile_relp is not zero, go to step b,
Otherwise, store nbits . in ’ thg

rf.devices(devnunber).profile_length, allocate a bit string of
the appropriate size in the area, and store the relp to that it
string in rf.devices(devnumber).profile_relp. |If the area is not
larze enough, set bit 7 of ¢gstatus, unlock the RF and return,

5. Store the bit string (length nbits) pointed to by dataptr in
the appropriate device profile and return. The rules of bit
assignment relating to padding and truncating apply.

get profile

This call is made to read out a profile. The foilowing steps are
taken in response to the call:

1. If the file is non-existent ,set bit 1 of cstatus and return.
If this user does not have read permission for the file, set bhit
8 of cstatus and return, '

Page 8 MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.Z2.22

2. If devnumber is less than one or greater than rf.ndev, set
oit 2 of ¢status and return.

3. Lock the RF using rf.lock as a lock structure.

. . | f the arguments are valid, then if
rf.devices(devnumber).profile_relp is zero, set the %it string

pointed to by dataptr (length nbits) equal to the null string,
unlock the RF, and return.

4., Set the bit string described above equal to the devnumberth
device profile using bit string assignment rules. Unlock the RF

and return.

get nlog

This call is made to find out how many behavior log entries for
the devices associated with the RF. In response to the call, the
following steps are taken:

1. If the RF with the given type and name is non-existent, set

bit 1 of gstagug and return. If this user dJdoes not have read
permission for the file, set bit 8 of gstatus and returrn.

2. Store as many of the nlog entries in rf.devices into the

nlogs array as possible. I|f the argument array has more elenents
than there are devices, fill in the rest of the array with

zeroes, If there are elements in the RF that have not been
returned, set bit 18 of cstatus. :

3., Return.

add log

The following call is made to add a behavior lbg entry for a
device associated with the file. In response to the <call, the
followine steps are taken:

1. If the RF with the given type and name is non-existent, set

“it 1 of cstatus and return. If this user does not have read
“permission for he file, set bit 8 of ¢cstatus and return, |If the

fila is not writahle from the caller's ring, set bit 4 of cstatus
and return. '

2. Lock the RF.

3. If devnumber is less than one or greater than rf.ndev, set
bit 2 of cstatus, unlock the RF and return, '

4, Otherwise, allocate a structure like the following in the
area in the RF:

decl 1 log_entry based(p),

ﬂ

MULTICS SYSTEM PROCRAMMERS' MANUAL SECTION BF,2,22 | Page 9

next_reln hit(18),
time fixed hin(71),
proc_id bit(36),
user_id char(590),
nhbits fixed bin,
data bit(nhits);

PRON N DO N

3ee the deciaration of all arguments of RFM calls for the meaning
ot the elements of the structure. If the area is not dur_ e
enough, set bit 7 of ¢cstatus, unlock the RF, and return.

5. |If the allocation succeeds, copy the bit string of Jlength
nbits pointed to by dataptr into the appropriate part of the
structure. Store the present process id, user id, and timer
value in the structure, as well as nbits. Set the next_rel;:
aqual to zero. |If rf.devices(devnumber).oldest_log_relp is zero,
set it and the corresponding newest_log_relp equal to the offiset
of the newly allocated structure. |If the oldest relp is nonzero,
then set the relp in the structure pointed to - hy
rf.devicas(devnunber).newest_log_relp equal to the offset of the
new structure, and then store that same offset in
newest_los_relp.

6. Increment rf.devices(devnumber).nlog by one, unlock the RF,
and return. :

delete loc¢

This call is used to delete a set of behavior log entries for a
particular device associated with a Registry File, In response
to such a call, the following steps are taken:

1. If the RF with given type and name is non-existent, set bit 1

of cstatus and return. |f the file is not rcadable by this user,
set bit 8 of cstatus and return. If the file is not writable

from the caller!s ring, set bit 4 of cstatus and return.
2. Call the Locker and lock the RF using rf.lock structure.

3. If devnumber, first, or number is 1less than one or if
devnunber is greater than rf.ndev or if the sum of first and
nuinber is greater than rf.devices(devnumber).nlog, then unlouck
the RF, set bit 2 of cstatus and return.

L. Otherwise, follow the chain of relps for the behavior log of
the device. Starting at the first element (counting the oldest
1ink on the chain as number 1), free number of them. Make the
next_relp of the last entry not freed point to the one after the
zap, or set it to zero if it is now the last entry on the chain.
Modify oldest_log_relp and newast_log_relp in the devices array
of the RF as necessary.

5. Uhlbck the RF and retufn.

Page 10 MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.2:

read 1oz

This call is used to read out a set of log entries
(non-destructively). In response to the «call, the following
steps are taken: :

1. |If the file is non-existent, set bit 1 of cstatus and return.
If the file is not readable by this user, set bit 8 of cstatus
and return.

2. If devnumber, first, or number is less than one, or if
devhumber is greater than rf.ndev or if the sum of first and
number is sreater than rf.devices(davnumber).nlog then set bit 2
of cstatus and return,

3. Chase the chain of relps until the entry with index equal to
first is found. Cony out the contents of the 1o~ entry into the
correspondinag elements of the info array. (The next_loz relp is
not copiad and a pointer to the data string is stored in
datantr). |If therc are more entry logs on the chain, set bit i3
of cstatus. Return. ~

cet ubs

This call is used to get the uptypes and upnames (identifications
of the RFs that point down to this one). In response to the
call, the following steps are taken:

1. If the file is non-existent, set bit 1 of cstatus and return.
If the file is not readable by this user, set bit 8§ of c¢cstatus
and return. , ~

2. Copy as inany elements of the uptype and upname arrays
(elements of rf.up) into the uptypes and upnames character array
arzuments. Set nreturned equal to the number of complete pairs
of RF nanes. |If there are more than this, set bit 18 of ¢status.

3., Return.

zet down

This call is used to find the next RF in a chain, assuming they
have been previously linked. In response to the call, the
following steps are taken:

1. If the RF with type type and name pame is non-existent or
inaccessihle, set hit 1 of cstatus and return.

2. If rf.present_type_index is not greater than csero and less
than or equal to rf.ntypes, set bit 5 of cstatus and return.

3. - Otherwise, set down_type equal to
rfx.att_types(r” S ‘pe_index).down_type and store as wmany

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.22 Page 11

of the corrrsponding down_names into the down names array. 1f
there arc more element of the arrsument array than down names,
fFill in the extra elements with blanks. If there are more down

names, sot hit 18 of cstatus. Return.

1ink

This call is used to link up two Reristry Files, an upper one qnd
a lower one. This call is meant for wuse by certain Lovice
Control Modules, In response to the call, the following steps

are taken:

1. Find the Registry File with type toptype and nale topnang.

If the file does not exist, set bit 1 of cstatus and return. It
the file is not readable by this user, set bit & of cstatus Jdna
return. If the file is not writable by this wuJser froa the

caller's rine, set bit 4 of cstatus and return.

2, Do the same checking for the file with type bDbottoatype and
name LSottomname. .

3. If any of the following conditions holds, set bit 2 of
cstatus and return:

unindex is less than one or greater than rf.nup in the lower
file.

lown _index is less than one or greater than rf.ndown in the upper
file. : .

att type index is negative or greater than rf.ntypes in the upper
fila, If that arsgument is zero, then if rf.nresent_type_index is
less than one or greater than rf.ntypes.

L, | f att _type index is non-zerd, store it in
rf.present_type_index for the upper file. Call the value of the
present_type_index N. :

5., Store bottoi name in rfx.att_types(il).down_name(down_index)

in tha upper file.

6. Store bottomtype and hottomname in the corresponding elements
of rf.up(upindex) in the lower file.

7. neturn.

1 File non-existent
2 MNuinber out of range
3

Typename not found
L File not writable (set profile, add log, delete loz,

and link calls only) _
5 Unlinke:d Registry File (get down call only)
65 Hon-RF unexnected error

Paze 12 JAULTICS SYSTEM PROGRAMMERS' MANUAL SECTIUN BF.2.22
7 Arza too small (add loz and set Drofile'calls‘@nly)

3
1e

File not readable by this user
More data available (array not large enough)

