T0: MSPM Distribution
FROM: P, G, Neumann

DATE: January 10, 1968
SUBJ: BF.2,23, 2,25, 2,26

The attached copies of BF.2.23, 2.25 and 2,26 represent
minor modifications of the existing published documents,

I

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF,2.23 PAGE 1

Published: 01/10/68
(Supersedes: BF.2,23, 08/14/67)

ldentification

The Attachment Module
R. C. Daley and S. |. Feldman

Burpose

This section describes the Attachment Module. The Attachment
Module Is called by Device Strategy Modules (DSMs) to handle
attach, divert, revert, detach, and lnvert calls. There are also
entries to handle the trap quits and trap hangup order calls and
an entry to find out the name of the Registry File with highest
level for the device. This section also describes the 1/0
Registry Files, which are the principal data base of the
Attachment Module.

Introduction
The Attachment Module is called to do standard processing of
certain outer calls for DSMs,. This module 1Is basically

responsible for setting up the communication with the Device
Control Module (DCM) in the Device Manager Process (DMP), for
splicing modules in above the DSM, and for pushing down and
popping up paths 1In response to divert and revert calls,
respectively. (In this section, it will be assumed for sake of
convenlience that the outer module that the DSM wishes to call s
a DCM; the DSM could actually call any outer module. The
Attachment Module also handles the detachment of the DSM and DCM
and, In response to |nvert calls, deletes paths that have been
pushed down but will never be popped up.

This section describes the |/0 Registry Files, glves a brilef
discussion of the Inter-process Communication Block, and then
describes detalled handling of the elght entry polints to the
Attachment Module:

attm$attach
attm$divert
attm$revert
attm$detach
attm$invert
attm$trap_quits
attm$trap_hangup
attm$get_rf

*

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 2

Ibe 1/0 Reglistry Eiles

The 1/0 Registry Files describe all of the devices that may be
connected to a given system. These files are linked together to
Indicate the connections between devices. Each Reglistry File
(RF) contains a level number., A level 1 RF corresponds to a GIOC
channel; a Jlevel 2 RF corresponds to a device connected
direcontroly to a GIOC channel, etc. An example of a Reglstry
File chain Is the set of files describing a printer attached to a
remote computer. The level 3 file describes the printer, the
level 2 file describes the remote computer, and the level 1 file
describes the GIOC channel and hardware-connected data set.

The Reglistry Flles are organized Iinto directories. The
directories are all accessed via the Reglistry File Directory
Directory. It is expected that the directories and the files
within them will have many names to allow different ways of
specifying a device. In the following, the directory name will
be called the "type" and the file name within the directory will
be called the "name'. The "down" direction is toward the GIlO€C
channel (lower level numbers) and the "up" direction 1iIs toward
higher level numbers, '

The following Is a declaration of a Registry File:

dcl 1 rf based(rfp),
2 level fixed bin(35), /*level=1 for a GIOC channel, 2 for
" a device connected directly to
" a GIOC channel, etc.*/
2 force_udmp bit(1), /*1f 1, force the use of a universal
" device manager process*/

2 In_use_switch bit(36), /*set ON at attach time and OFF
" at detach time*/
2 hangupable bit(1), /*if ON, device can hang up*/
2 logchans bit(l), /*if ON, the down_names for this
" device are to be filled In by a call
" to the hardcore ring to get the present
" RF name corresponding to the logical
" channel names. |If this bit Is ON,
" no more RFs are to be searched.*/
2 allocate bit(l), /*1f ON, Reserver should be called
" with each resource_name as argument,*/
2 temp_link bit(1), /*connection with next file Is
" temporary. Blank out down_name
" entries upon detachment*/
2 nup fixed bin(35), /*number of entries In up array*/
2 ndown fixed bin(35), /*number of entries in down arrayw/
2 ndev fixed bin(35), /*number of entrlies in devices array*/
2 ntypes fixed bin(35), /*number of entries in att_types arrayi’gs

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 3

-

2 present type_index fixed bin(35), /*index in att_types array of

type with which device was last
" attached*/

2 down_slot flixed 6!n(35), /*position of upname for this fille

in up array of next registry filex/

2 alloc_type char(32), /*use this type In calls to the
" Reserver alloc$resource
" entryx/
2 lock blt(lay), /*for locking RF when threading
" or deleting behavior log entries or
" modi fying the profile.*/
2 up(rfp=>rf.nup), /*registry files pointing to thls one*/
3 uptype char(32),
3 upname char(32),
2 devices(rfp=>rf.ndev), /*entrles for devices assoclated
" with this registry flle»/
3 resource_name char(32), /*name used in calls to the Reserver
" and the Device Assignment Module*/
3 profile_relp bit(18), /*relp to device profile for this
" devicew/
3 profile_length fixed bin, /+*number of bits in this profile*/
3 oldest_log_relp bit(18), /+*relp to oldest entry in behavior log+*/
3 newest log_relp bit(18), /*relp to most recent entry in
behavior logw+/
3 nlog fixed bin, /*number of entries in behavior log*/
3 device_type fixed bin(35),
2 att_ types(rfp->rf ntypes),/*special iInformation for each type
by which this device may be known®*/
3 type_name char(32),
3 cem_type char(32), /*type of CCM to be spliced in above
" the DSMw/
3 trace_down bit(1l), /*if ON, trace down to next registry
" file. Otherwise, stop here*/
3 alloc_down bit(l), /*if ON, must call Reserver to
" allocate a device of type
" down_type,. and use returned
" resource_name as down_name(l).
" In elther case, find next RF by
" using down_type and down_name(1l)*/
3

WW W

look_only bit(1), /*keep tracing down to other RFs

" under trace_down control, but
: only to compute CCM typename*/
down_type char(32), /*used as described abovex*/
down_name(rfp=->rf.ndown) char(32), /+used as described above*/
loglcal channel (rfp=>rf.ndown) char(32), /+array of

names to be used in call to get present

" equivalent RF name from

" info In DCT. Used only if the

" logchans bit Is onw*/
extra_mode char(32), /*character string to be

" concatenated with mode to be

" passed to DCM#/
dem_type char(32), /*used as type In attach call to

*

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE &

+

" DCM If trace_down Is OFF or

" look_only is ONw/ <
3 dem_name char(32), /*used as loname2 of attach call to
" DCM [f trace_down Is
" OFF or look_only Is ONw/
2 free_storage area((15000));

/*

®/ ‘

del 1 rf_ra based(p), /*speclal Registry Flle. There is a

file of this format assoclated with
" each regular RF, with name equal to
" the name of the normal RF concatenated
" with "_ro". This file contains
" certaln data that must be protected
" agalnst tampering and is therefore
" read-only to most users,w/
2 pdt_name char(32), /*name of PDT in DMP=»/
2 udmp_user_id char(50); /*user_id of universal device manager
" for this device, if anyw/

As Is clear from the above, a Registry File contains a large
number of switches and character strings. The discussion of the
various entry points to the Attachment Module explains the use of

the various parts of the Registry File. ~/

The "up" array of a RF contains the list of names of Registry
Files with down_type and down_name equal to the name of the glven
file. The kth uptype and upname equals the name of the file with
down_type and down_name equal to the name of this file and with
down_slot equal to k.

A Registry File may represent several separate devices which, for
varlous reasons, It is convenient to consider as a single device.
An example of such a grouplng 1iIs a full-duplex typewrliter
channel, which requires two GIOC channels to control one
typewriter; such a palr of channels would have a single level 1
RF. The "devices" array in the Registry File 1Is designed to
handle such cases.

Since directories may have several names, a given RF may be
reached with several different types. Different chalining of
files and different calls to the DCM may be desired for different
types. Information on the name of the driving table for use by
the Code Conversion Module (CCM), 1If any, and the method of
finding the next lower RF, If any, 1Is kept In the att_types

array.

There are two different ways the next RF may be found. If an
alloc_down switch 1In the att_types array 1Is OFF, then the <
corresponding down_type and down_name entrlies specify the next

h

MULTICS SYSTEM=PROGRAMMER'S MANUAL SECTION BF,2.23 PAGE 5

Registry File. This type of linking Is used when the assoclation
between devices Is known. |If an alloc_down switch Is ON, then a
device of type equal to the corresponding down_type must be
allocated. This form of allocation |Is used, for example, to
allocate a 7-track tape drive on which to mount a particular
tape; the user does not care which particular drive is used.

Certain entrlies In the RFs are of Interest to outer modules.
Speciflcally, the resource_names are needed by DCMs to make
asslgn calls to the GIM, The device_types and profile polinters
are needed by outer modules which need descriptions of devices.
An 1/0 Reglistry File Maintaliner will be supplied to flll such
needs.

Ihe Inter-process Communication Block

The per-ioname segment (1S) of each DSM contains an Inter-process
Communication Block (ICB) which contains information used by the
Attachment Module, Request Queuer, and Driver. It contalns event
channel names, switches to indicate functions to be performed by
the Dispatcher, lonemaes, Registry File names, two 1lock 1lists,
and varlous other plieces of information., The followlng is a
declaration of the ICB:

dcl

N NN

NN NN

1 Icb based (p), /*inter-process communication block*/
queue_lock_list bit(l4lk), /*standard lock for request queuing+*/
jocall_event bit(70), /*event channel name*/

dmp_proc_Iid bit (36), /*device manager process ld+*/
dmp_user_1id char(50), /*user id of dmp if not privatex/
prlvate dmp bit(1), /*1 if a private DMP was created+/
quit_event bit(70), /*event namew/

réstar&_event bit(70), /*name of event channel to be signaled

to restart path in DMP without
" passing an outer callw/

reset bit(1l), /*set to 1 to cause a reset

" of all calls In request queue

" ‘ when next restart is done*/
Invert bit(l), /*set to 1 to cause diverted paths

L in DMP to be detached*/

invert_event bit(70), /*name of event channel to be

" signaled when inversion complete»/
divert bit(l), /*set to 1 to cause present iopath

" to be quitw/
divert_event bit(70), /*name of event channel to be

w signaled when diversion complete*/
trap_ggits bit (1), /*if 1,signal if quit occurs

on device*/
overseer_trap_hangup bit(l), /*if 1, signal overseer |f
" hangup occurs on devicex*/
trap_hangup bit(l), /*if 1, signal if hangup occurs on

kY

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 6

" device*/ —
quit_id bit (36), /*id of process to be signaled on qul\Jr/
overseer_id bit(36), /*process Id of overseer+/
hangupwld bit(36), /*id for process to be signaled

when device hangs upw¥/
quit_report_event bit(70), /*event signaled If device quit#*/
overseer _hangup_report_event bit(70), /*event to be

signaled If hangup occursw/

NN NN

2 hangup_report_event bit(70), /*event to be signaled If
‘ " device hangs up*/
2 diverted bit(1l), /*1 If this loname has been
" diverted+*/
2 divert_type bit(1l), /*when diverting, set to 1l If
" the two loname arguments are
\ " equal*/
2 alloc_down bit(1l), /*how this registry file was reached.
' " If ON, device of given type was
" allocated and name returned.
" Otherwise, name came from description
" argument of call.w/
2 dsm_rf_type char(32), /*type of first RF (highest level)*/
2 dsm_rf_name char(32), /*name of first RF»/
2 dcm type char(32), ‘ /*type to be used in attach

calls to the DCMw/
2 dcm descriptlon char(32), /*description to be used In attach
calls to the DCM¥/
2 nchar_ dcm mode fixed bin(17), /*number of characters ‘
in dem_mode*/ ~/
2 dem_mode_relp bit(18), /*relp to character string
-o" equal to mode of DCMw/

2 old_dsm_loname char (32), /*previous dsm ioname*/
2 new_Ils_name char(32), /*for use when diverting.
" Name of new
" per-loname segment¥/
2 dcm_ioname char(32), /*for possible future use In
" handling NODMP mode*/
2 old_dcm_ioname char(32), /*same as abovew/
2 lcb_lock_list bit(1lkb), /*standard lock»/
2 invert_proc_id bit(36), /*response event for Invertw/
2 divert_proc_Iid bit(36); /*response event for divertw/

Ihe Process Dispatching Iable

The Process Dispatching Table (PDT) describes the devices that
may be controlled by a given Device Manager Process, and Is
therefore of Iinterest mainly to the Dispatcher. However, If a
private DMP is to be created, the Attachment Module must create
the DMP, Also, the Attachment Module must know the declaration
of the PDT in order to find the DMP's process id and the name of
the reassign event channel. Therefore, for convenlence, a
declaration of the PDT Is Included here. For a more detalled
discussion of the PDT, see BF.2.25 <

MULTICS SYSTEM-PROGRAMMER'S MANUAL

del

1 pdt based(p),
Inlt_paoc char(32),

dmp_proc_id bit(3b),
[1]

reassign_event bit(70),
(1]

creator_id bit(36),
11}

inft_dgqp_event bit(70),
‘ N‘
currens ptr,

pdt_nawe char(32),
dtébp ptr,

[1]
dlsn_pgr,

3 reasslign ptr,

3 locall ptr,

3 reenable ptr,

3 restart ptr,

3 quit ptr,

3 hardware ptr, .
nroutes fixed bin(17),
routesan);

type char(32),

user_id char(50),
foname char(15),
pibp ptr,

icbp ptr,
tbsp"ptr,

WWWWWWW

att_stack ptr,
"

W

3 loca'l'l_evént bit(70),

"
3 restart_event bit(70),

3 hardware_eVent bit(70),

resource_name char(32),

SECTION BF.2,23 PAGE 7

/*Process Dispatching Tablex*/

/*name of procedure to be
called for initiallzation.
Equal to '"disp$init'=/

/*id of this Device Manager
Process*/

/*event channel to be signaled
when device Is assigned or
unassigned to this process*/

/*id of process that created thlis
Device Managerw»/

/*event channel to be signaled when
Initialization of this process is
complete,*/

/*pointer to element of routes
for device for which work
Is belng done at presentw/

/*name used by other processes to
find PDT»/

/*pointer to Driver's driving
table*/

/*pointers to entry points of
the Dispatcher*/

/*number of entries In routes array*/

/*an entry for each device which
may be assligned to thils process.
n = pdt.nroutes+/

/*type of resourcet*/ .

/*resource_name for this device+/

/*user to whom device Is assigned+/

/*DCM loname, a unique character string+/

/*pointer to PIB for this DSMw/
/*pointer to ICB for DSMw/
/*pointer to Transaction Block
segment in user's group
directory*/
/*pointer to entry In attach_stack
area for pushed-down DCMw%/
/*event to be signaled by DSM
for localling, resetting,
inverting, and diverting*/
/*slignaled to restart a path
in external quit conditionw/
/*event channel signaled when
interrupt received from device«/

MULTICS SVSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 8
3 quit_event bit(70), /*event to be signaled to stop
" device and prepare for a diverts/
3 reenable_event bit(70), /*signaled when auxliliary
" chain or TBS is unlocked»/
3 device_absent bit(1l), /*1 If device not presentw/
3 assigned bit(1l), /*1 If device assligned to this
: " process*/
3 attached bit(l), /*1 If attach call has been
i " | ssued»*/
3 ext_quit bit(l), /*1 If device In external quit
" condition*/
S;Int_qult bit(l), /*1 if device In internal (hardware)

quit conditionw/
2 attach stack area((10000));/*area Into which blocks are
: allocated for diverted paths*/

/t
*/
dcl 1 att_thread based(p), /*declaration of block to be
‘ " allocated Into att_stack
" area for pushing down of
" DCMs*/
2 ioname char(15), /*DCM loname=/
2 locall_event bit(70), /*event channel name+/
2 reenable_event bit(70), /*event channel name*/
2 pibp ptr,
2 icbp ptr,
2 status,

3 attached bit(l),

3 ext_quit bit(l), _
2 next psr; /*points to next block In thread
[]

of pushed-down DCMs*/

When necessary, the Attachment Module calls the Mode Handler (see
BF.2.27) to Interpret mode and disposal arguments of «calls.
Therefore, the DSM does not need to make these calls. The bmode
string Iin the PIB 1Is updated whenever mode argument Is
interpreted.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 9

Attach Call Processing

The Attachment Module has an entry point to perform most of the
processing needed for a DSM to handle an attach call. The call
Is:

call attm$attach(pibptr,mode,dcmstatus, sfmstatus,cstatus);
dcl mode char(+), /*fourth argument of attach
: callx/
demstatus bit(l44), /*status from logcalattach call
" sent to DCM=/
sfmstatus bit(1lu4b4), /+«status from attach call to SFM,
w If SECTIONAL mode specifled*/
cstatus bit(18); /*status returned by Attachment
Module*/

In response to this call, the Attachment Module traces down the
Registry Flles corresponding to the device or devices Impllied by
the type and description arguments of the attach call recelved by
the DSM, As necessary, devices are allocated, depending on
switches In the various RFs. A private DMP |Is created only If
the PRIVATE mode is specified In mode and Iif the use of a
Universal Device Manager Process is not forced by the Reglstry
Files. The attach call |Is passed to the DCM with type and
description arguments found In the last RF and a mode argument
computed using strings found In the RFs and passmode (the string
returned by the Mode Handler in step 1 below).

The description argument 1Is considered to be a sequence of
components delimited by slash ("/") characters. These components
are used as Registry File names when a device Is to be allocated
(see below). A subroutine of the Attachment Module will be used
to break the string into components and to delete blanks,

It Is convenient to define a few temporary varlables In the
following discussion, Let A be a switch which Indicates how a
Registry Flle was reached. If ON, a call was made to the
Reserver to allocate a device of a particular type and the file
name was returned; if OFF, the name was known without performing
such a call, Let NAME be the name of the RF and TYPE 1Its type.
Let UPTYPE and UPNAME be the last values of TYPE and NAME, and
let N be an Integer Indicating the position In the “up" array
into which UPTYPE and UPNAME are to be stored. Let CCMTYPE be
the name of the driving table to be used by the CCM. Let DCMMODE
be the mode to be used In attaching the DCM., Let HANGUPABLE be a
switch lndk&atlng whether the device can hang up. Let LASTTYPE
be the type of the last Registry Flle through which the
Attachment Module traced down (see below for explanation of
terms). Let RESOURCE be the first resource_name In that file and
FORCEUDMP be the force_udmp bit In that file.

In the following, '"description'" is a character string of 1length
32 equal to the corresponding argument in the attach call. This
string is taken from pib.ioname2.

3

MULTICS SYSTEM=PROGRAMMER'S MANUAL SECTION BF,.2,23 PAGE 10

In response to the gttm$attach call, the following steps are
taken:

1. Set gstatus equal to zero and call the Mode Handler (see
BF.2.27) to Interpret mode. Two arguments are returned:
passmode (a character string of modes to be passed on to the DCM)
and bmode, a 72-bit bit string which Is a summary of the modes at
this time. Both of these return arguments will be used below.
If there is any error in the mode interpretation, set bit 10 of
cstatus and return, Otherwise, store bmode in pib.,bmode.

2, Allocate the ICB In area pib.locarea and initialize It. Al
items in the ICB should be zero except the values of “n" In the
two lock lists should be set to the appropriate values.

3. Initlalize: Blank out UPTYPE, UPNAME, CCMTYPE, and DCMMODE.
Set TYPE and Iicb.dsm_rf_type equal to pib,typename. Set
HANGUPABLE, dcmstatus, and sfmstatus equal to zero.

4, This and the next step find the next (first) Registry Flle.
If the next (first) component of description !s not null, go to
step 5. Otherwise, a device of type TYPE must be allocated.
This is done by the following call to the Reserver:

call alloc$type(TYPE,NAME,status);

The Reserver will, if a device Is avallable, return the name of
the device in NAME, |If no device is avallable, set bit 3 of
cstatus and go to step 27, |If an allocation iIs made, set A ON to
indicate how the allocation was made. If there is no present
Registry Flle (i.e., this Is the first time step 4 has been
reached), store NAME 1in icb.dsm_rf_name, Set the alloc_down
switch In the ICB ON, |If there is a present RF, store NAME In
rf.att_types.down_name(rf.present_type_index). Go to step 6.

5. |If the component of description checked in step 4 1Is not
null, set NAME equal to that component and set A OFF to indicate
how that name was found. |If there 1Is not a current Registry
File, set Icb.alloc_down OFF and store NAME in icb.dsm_rf_name.
I f there is . a current registry file, store NAME In
rf.att_types.down_name(rf.present_type_index).

6. Find and lock the proper Registry File:

a. |If NAME is blank, set bit 2 of gstatus and go to step
27: the Registry Files have not yet been linked. This can
happen iIf an attachment is attempted before a dlialup has
occurred on a typewriter.

b. Search the Registry File Directory Directory for a
directory with name TYPE. |If such a directory Is not found

or Is not accessible to this user, set bit 1 of gstatus and -

go to step 27.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 11

c. Search that directory for a file name NAME. |If no such
file exists or If It Is not accessible to this user, set bit
1l of gcstatus and go to step 27,

7. |If the logchan bit in the RF Is ON, go to step 8. If A s
OFF and the allocate switch in the RF Is ON, then the Reserver
should be called to allocate the devices associated with the file
by making the following call:

call alloc$resource(alloc_type,rf.devices.resource_name(l),status);
If the allocation fails, set bit 3 of gstatus and go to step 27.

8. Search the att_types array for a '"type'" entry equal to TYPE.
If none Is found, set bit 5 of ¢cstatus and go to step 27, |If an
entry with the proper type Is found, do the following:

a. Store the index of that type in present_type_Iindex.
b. Store the present process_Ild In in_use_sw,

c. I|f this Is the first RF found, store blanks in all the
uptype and upname entries. |If this 1{Is not the flirst RF
found, store UPTYPE and UPNAME 1In rf,up(N).uptype and
rf.up(N).upname, respectively,

d. Set DCMMODE equal to DCMMODE || “/" || rf.extra_mode.

e. Set CCMTYPE equal to CCMTYPE || rf.ccm_type. Remove
embedded blanks from CCMTYPE. (Assume that rf.ccm_type and
CCMTYPE are left adjusted and padded on the right with
blanks).

f. Set HANGUPABLE equal to HANGUPABLE || rf.hangupable.

g. If rf.ndown Is equal to one and rf.,logchans is OFF, go
to step 9, .

h. If rf.ndown is less than one, set bit 12 of gstatus and
go to step 27,

i« If rf.logchans is OFF, go to k.

j. Call the DCTM with each of the ndown 1logical channel
names and store the returned value the corresponding element
of the down_name array. |If any of these calls falls, set
bit 3 of cstatus and go to step 27.

k. Find the ndown RFs pointed to by the down_type and
down_names in the present RF. |If the allocate bit Iin one of
those files Is ON, call gallocS$resource using the first
resource_name In that file as pname argument and down_type
(above) as type. |f any of these RFs do not exist or If any

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 12

of the allocations fail, deallocate any devices allocated so -
far in this part of the step, set bit 3 of gcstatus and go to
step 27.

1. Otherwise, go to step 16.

9. If the trace_down switch 1Is OFF, store dcm_type Iin
icb.dem_type and store dcm_name In ficb.dcm_description. Set
LASTTYPE equal to TYPE and set RESOURCE equal to the first
resource_name In the present RF. Set FORCEUDMP equal to the
force_udmp bit in the file and go to step 16.

10, |If the look_only switch is ON, go to step 12, Otherwlse,
set N equal to down_slot, UPTYPE equal to TYPE, UPNAME equal to
NAME, and TYPE equal to down_type. These assignments are
necessary to prepare to examine the next RF.

11. If the alloc_down switch in the RF is ON, go to step U4 to
allocate the device. Otherwise, set NAME equal to down_name(l),
set A OFF, and go to step 6.

12, |If the look_only switch Is ON, continue examining Registry
Files, but only to compute DCMMODE, CCMTYPE, and HANGUPABLE, It
is assumed that the 1lower RFs are already 1linked, Set
icb.dcm_type equal to dcm_type and icb.dcm_description equal to
dem_name. Set LASTTRACE equal to TYPE and set RESOURCE equal to
the first resource_name in the present RF., Set FORCEUDMP equal
to the force_udmp bit in the file.

13, If rf.ndown is not equal to 1, set bit 2 of ¢gstatus and go
to step 27, Otherwise, find the RF with type equal to
rf.att_types(rf.present_type_index).down_type and name equal to
rf.att_types(rf.present_type_index).down_name(l). I|f either of
these character strings Is blank, set bit 2 of gstatus and go to
step 27. |If no such file exists and Is accessible to this user,
set bit 1 of gstatus and go to step 27, |If the RF found has a
zero In_use_sw, then set bit 2 of gcstatus and go to step 27,

14, Calculate DCMMODE, CCMTYPE, and HANGUPABLE:

a. Set DCMMODE equal to DCMMODE Il wyn Il
rf.att_types(rf.present_type_Ilndex),.extra_mode.

b. Set CCMTYPE equal to CCMTYPE |1
rf.att_types(rf.present_type_Iindex).ccm_type. Remove
embedded blanks.

c. Set HANGUPABLE equal to HANGUPABLE | rf.hangupable

15. If rf.att_types(rf.present_type_index).trace_down is ON, go
to step 13,

16. Store the number of characters in DCMMODE in
icb.nchar_dcm_mode, and then allocate a string of that length In

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 13

pib.loarea. Store DCMMODE in that string and stocre a relative
pointer to that string Iin lcb.dcm_mode_relp.

17. |If the PRIVATE mode is specified in bmode and [f FORCEUDMP
Is OFF, go to step 18, Otherwise, a Universal Device Manager
Process Is supposed to be used. The name of the group contalning
that DMP and the name of the PDT for that process (In that
group's group directory) are found in a special flle. That flle
Is found in the directory with name equal to LASTTYPE. The name

of the file In that directory equals RESOURCE || “_ro" (for
"read-only", the attribute of the file). Store the wuser 1Iid of
the DMP in Icb.dmp_user_id and set icb.private OFF, Call the

Device Asslignment Module to assign the Universal Device Manager
Process as the control user of the device:

call loam$set_control (LASTTYPE,RESOURCE,udmp_user_id,error);
Get a pointer to the PDT for the DMP, which can be found using
the naming algorithm described above. Keep this pointer for use
In step 20. Go to step 19,
18, If a private DMP Is desired, the followlng‘steps are taken:

a. Create a Process Dispatching Table segment for a new DMP

as a branch of the present group dlrectory. Set nroutes
equal to 1, set routes(l).type equal to "'LASTTYPE, and set
routes(l).resource_name equal to RESOURCE. Set

pdt.Init_proc equal to "disps$init",

b. Create &an event channel and store 1Its name In
pdt.inlt_done_event and store the present process 1Id Iin
pdt.creator_id.

c. Store the unique character string created In step a
above (the entry name of the PDT) In pdt.pdt_name.

d. Create the DMP by a call to create proc (see BJ.2).

e. Walit for the response event to be signaled, and then
destroy that event channel,

f. Set icb.private_dmp ON,

19, Create a 1link In the user's group directory to the
per-ioname segment (1S) with name RESOURCE., This link Is used by
the Dispatcher jn the DMP to access the IS,

20, Signal the reasslign event for the DMP, The event name |Is
found In the Process Dispatching Table (PDT) in the DMP, This
signal will cause the Dispatcher to prepare for an localattach
call for the device from this user.

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2,.23 PAGE 14

21. Create an event channel. |If icb.private is OFF, give user
icb.dmp_user_id access to the channel., Call the Request Queuer <
(see BF.2.24) to pass a localattach call to the DCM. Use
icb.dem_type as the type argument, Icb.dcm_description as the

. and:- DCMMODE || passmode as the mode argument. Use
the event channel just created as the completion event. Upon
return from the Request Queuer, wait for the completion event to
be signaled. Destroy the event channel. Use the Transactlion
block index returned by the Queuer to make a call to rag$get chain
for the localattach call. Store that status 1In the gstatus
argument of the call to the Attachment Module.

22, Delete the link to the IS, |If the attachment falled, set
bit 4 of gstatus and go to step 27,

23, In order for the quit and restart mechanism to work, the -
Overseer must have avallable a 1list of devices and certaln
assoclated event channel names avallable. The 1o control
procedure (see BF.3,01) Is the Interface between the Overseer
quit and restart mechanism and the |/0 System. The following
call is made by the Attachment Module to inform io control of the
new device and to get certain information from the ICB and to put
other Information into the ICB:

call ifo_controlsattach(pib.lonamel,type,description,icb.overseer_id,
icb.dmp_proc_id, icb.quit_event,icb.restart_event,
HANGUPABLE, icb.overseer_hangup_report_event,cstatus); w
N

If HANGUPABLE Is OFF or if the hangup report event is zero, set
icb.overseer_trap_hangup bit OFF; otherwise, set It ON,

24, |If CCMTYPE is blank, then go to step 25, Otherwise, the DSM
uses a Code Conversion Module (CCM), and the second driving table
pointer (pib.dtabp2) must point to the appropriate driving table.
Therefore, the following call is made:

call atm$change_dtab(pib, ionamel,2,CCMTYPE,O0,"0"b,cstatus);

25, If bmode speclifles the SECTIONAL mode, the Sectional
Formatting Module (SFM) (see BF.8) must be spliced in immediately
above the DSM. This is done by renaming the DSM's switchpoint
and then attaching the SFM, First, a unique name is created (by
a call to unique_chars(unique_bits), see BY.15.01). Then the
following call is made:

call atmssettonamel(p!b.fonamel,unlque_name,cstatus);
dcl unique_name char(15),
cstatus bit(18);
The SFM is then gttach with the same mode that the DSM received:

call attach(pib,lonamel,'"sfm",unique_name,mode,status);
dcl status bit(1l44); -

MULTICS SYSTEM=PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 15

Finally, set the lonamel entry of the DSM's PIB equal to the
unique_name.

26, Return to the DSM,

27. In case of error, call the Internal cleanup procedure to
restore the RFs to thelr previous condition. To do this, make
the following call:

call cleanup(icbptr,bdisp);
dcl icbptr ptr,
bdisp bit(72);

For bdisp, use a bit string that would represent the HOLD/UNLOAD
disposal modes. Upon return from gleanup, return to the DSM.

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 16

Divert Call Processing

The dlivert outer call Is used to push down an 1/G path and to
create a fresh one for temporary use. The Attachment Module has
an entry point to to handle divert calls. The call Is:

call attms$divert(pibptr,newlioname,mode,cstatus);

dcl newioname char(*), /+*new name of diverted pathw/

mode char(»*), /*mode argument of dlvert callx/
cstatus bit(18); /=status for this callw/

The third argument Is part of the string of modes to be wused in
establishing the new DSM and DCM. The DSM ioname is changed if

is equal to the present Ifoname of the DSM, The
Dispatcher Is told to push down the old DCM and to create a new
one.

The divert call Is passed by the I/0 Switch regardliess of the
lock on the per-ioname segment. No transaction block s
allocated by the switch for this call because of Interlocking

problems.

The following steps are taken In response to the gagttms$divert
call:

1} Zero gstatus and call the Locker to 1lock the icb (using
jcb.icb_lock_list),

2. Call the Mode Handler to interpret mode. The Mode Handler
returns bmode and passmode. If there was an error 1In the
interpretation of mode, set bit 10 of gstatus, wunlock the ICB,
and return, ’

3. |If the diverted bit In the ICB Is ON, then this path has
already been diverted and cannot be dlverted again. Set bit 7 of
cstatus, unlock the ICB, and return.

b, |If pib.ionamel (the DSM's Iloname) equals pewioname, then
create a unique name and then make the following call:

call atm$rename_attach_return(pib.ionamel, unique_name,
pib.typename,pib.ioname2,status);
dcl status bit(1l4b);

This call causes the present loname to be changed to the unique
name and the partial attachment of a new {foname node with the
previous name of the present node. Thus, In one step, we have
created a new path and saved the present one. The new path has
not been fully attached, however. It will be activated by a
future attach grder call made by the Attachment Module. Set the
divert_type bit in the ICB to "1"b and go to 6,

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2,.23 PAGE 17

5. |If pib.ionamel Is not equal to pewlopname, set the divert type
bit to 0. Make the following calls: ’ —tyP

call lo_controls$lock;

call atm$attach_return(pib. ionamel, newioname,
pib,typename,pib, ioname2,status);
dcl status bit(lu4b);

call lo_control$rename(newioname,pib.ionamel,cstatus);

The first call keep fo_control's data base, the 0OIL, locked unti}
the next call to fo_control. The next call creates a new Ioname
but does not pass an attach call to it. By dolng this, the
Attachment Module has a chance to fix up the new ICB before
inltializing the new ioname by an attach grder call, The third
ca:l ingorms lo_control of the new name and causes the OIL to be
unlocked. '

6. Get a point to the new per-ioname segment by means of a call
to atms$get josegname. Store pnewjoname in the 1Ionamel entry of
the new PIB, and then copy the typename and {Ioname2 entries of
the present PIB Into the corresponding entries of the new PIB,

7. Allocate the ICB in the new IS and lock It. Initiallze this
ICB by copying the following from the old ICB:

All of the event channel names other than Invert_event and
divert_event,

All process lds.

The following one-bit Items: trap_quit, trap_hangup,
overseer_trap_hangup, private_dmp, and alloc_down,

A1l character strings other than old_dsm_Iioname, new_Isname,
dcm_name, and old_dcm_name.

Copy nchar_dcm_mode into the new ICB and then allocate in
the new IS a character string of that length and copy the
string pointed to by the dcm_mode_relp. Store a relp to
that string into the new decm_mode_relp.

8. Store the loname of the old DSM In the old_dsm_loname entry
of the new ICB.

9, Store the name of the new IS in the new_Iis_name entry of the
old ICB. The Dispatcher will use this name to access the new IS,

10, Store the bmode computed In step 2 in the bmode entry of the
PIB of the new DSM,

11, Create an event channel and store 1Iits name 1in the old
icb.divert_event, Store the present process 1Id In the old
icb.divert_proc_id. I f icb.private I's OFF, give user
icb.dmp_user_Id access to the event channel. Set Icb.dlvert ON
and signal the ifocall event. The Dispatcher will push down that
part of the path, create a new DCM foname and a new iocall event,

MULTICS SYSTEM=PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 18

and then signal the response event. Wait for the response event.
12. Call the Request Queuer to set up a regular localattach call
for the DCM In the Request Queue of the new IS. Use Icb.dcm_type

and icb.dem_description as the type and description arguments of
that call, and use the concatenation of the decm_mode 1in the IS

and passmode as the mode argument of that call, Wait for the
completion event, Destroy the event channel.
13, Set the diverted bit in the old ICB ON,
14, Make the following call:

call order(newioname,"attach",null,null,status);
This call will force the new DSM to Initialize 1itself by
performing all of the steps involved in normal gttach processing
other than calling the Attachment Module.
15. Unlock both the new and the old ICB.

16. Return to the DSM,

MULTICS SYSTEM=PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 19

Revert Call Processing

In order to pop up a diverted iopath, the revert outer call |Is
used., After the DSM has done necessary cleanup It makes the
following call to the Attachment Module:

call attm$revert(pibptr,disp,cstatus);

dcl disp char(x*), /*disposal argument of revert
callx/
cstatus bit(18);

The Attachment Module takes the following steps to pop up the DSM
and DCM:

1. Lock the ICB.

2, |If the diverted bit in the ICB is ON, set bit 7 of gstatus,
unlock the ICB, and return: only the most recent 1{lopath may be

reverted.

3. |If the old_dsm_ioname entry in the ICB is blank, then there

is no diverted path to revert; in that case, set bit 6 of gstatus
and go to step 11.

4, Call the Mode Handler to interpret disp. The Mode Handler
will return passmode, the disposal string to be used in the call
to the DCM, and bdisp, a bit string of length 72 which contains a
summary of the disposal modes at this node. |f the Mode Handler

indicates an error, set bit 10 of cstatus and go to step 1l1.

5. Set up an ordinary detach call with disposal equal to the
concatenation of passmode and "/DEV1" In the Request Queue and
signal the locall event for the device. Wait for the return
event. When the Driver in the DMP returns to the Dlispatcher

after handling a detach call, the Dispatcher pops up the next DCM
ioname and loname segment using Information in the PDT,

6. Get a pointer to the PIB of the per-loname segment of the old
DSM by making the following call:

call atm$get_losegname(icb.old_dsm_loname, isname,pibptr,cstatus);
Using this pointer, get a pointer to the popped-up ICB.
7. Make the following call:

call atm$delete_loname(pib.ionamel,"1", status);
dcl status bit(18);

Upon return to the 1/0 Switch from this outer call, the Attach
Table entry for this loname and the IS will be destroyed and all
related Transaction Blocks released.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF,.2.23 PAGE 20 _

8. |If the RESET disposal mode is specified 'in hdisp, set the
reset bit in the popped-up ICB. Signal the restart event. The
Dispatcher will call driver$restart with the reset bit as
argument., |f the reset bit Is ON, then all pending transactlons
will be reset (aborted and not to be restarted).

9. |If the divert_type bit in the popped up ICB-is 1, then make
the following calls:

call atm$switch_lonames(old_dsm_{ioname,
pibptr=>pib.lionamel,cstatus);

call losw$queue_restart(pib.lionamel,cstatus);

These calls exchange the ionames of the nodes and then restart
the path that was just popped up. Go to step 11,

10, |If the divert_type bit in the popped=-up ICB Is 0, then make
the following calls:

call lo_control$rename(old_dsm_loname,
pibptr=>pib,lonamel,cstatus);

call losw$queue_restart(old_dsm_loname,cstatus);

These calls update the OIL (Overseer loname List; see BF.3.01)
and restart the popped=-up path.

11. Unlock the ICB,

12, Return to the DSM,

Detach Call Processing

When a DSM recelives a detach call, It must clean up all pending
1/0, including 1/0 to be done by dlverted 1{opaths, and then
detach all of the CCMs, DSMs, and DCMs 1In these paths. The
Attachment Module has an entry to perform these functions. In

response to a detach call, a DSM cleans up its pending |1/0 and
then performs the following call:

call attm$detach(pibptr,disp,cstatus);
dcl disp char(»), /*dlisposal argument

of detach callx/
cstatus bit(18);

This call causes the DCM to be detached, and, depending on the
disposal modes, devices to be deallocated and reservations to be
released.

The followlin steps are taken 1In response to the call to

attm$detach:

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.253 PAGE 21

l. Call the Mode Handler to Interpret disp. The Mode Handler
will return passmode and bdisp, as described ahove. |If there was
an error In iInterpreting disp, set bit 10 of ¢gstatus and return.
2. Call attm$invert to destroy any pushed=-down paths.

3., Send a detach call to the DCM in the DMP with g*gggggl
argument equal to the concatenation of passmode anrnd “/DEV1

L, Call the gleanup internal procedure to deallocate devices,
cancel reservations, clean up Reglistry Files, and destroy the DMP
if private.

5. Make the following call to remove this 1ioname from the
Overseer loname List:

call lo_control$detach(pib.ionamel,cstatus);

6. Make the following call to the ATM to delete this ioname upon
return to the /0 Switch:

call atm$delete_ioname(pib. ionamel,"1"b,status);

7. Return to the DSM.

lnvert Call Processing
when a DSM recelives an jnvert call, it Is supposed to delete all

all lopaths that have been dlverted for that {Ioname. The DSM
immediately makes the following call to the Attachment Module:

call attm$invert(pibptr,cstatus);
dcl plibptr .ptr,
cstatus bit(18);
The following steps are taken:
1. Lock the ICB,

2. |If the old_dsm_loname in the ICB Is blank, then there are no
pushed down paths, sO go to step 6.

3. Create an event channel and store 1its name In
fcb.invert_event. Store the present process id in
icb.invert_proc_id. I f icb.private is OFF, give user

icb.dmp_user_id access to the event channel. Set Icb.invert ON
and slignal the locall event, Wait for the response event, and
then destroy that event channel. The Dispatcher will call
drivers$detach for each of the pushed-down DCM ifonames.

4, For each ioname in the chain of old_dsm_lonames, perform the
following steps:

by

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 22

a. Unlock the DSM's ICB.
b. Unlock the DSM's auxiliary chalin.
c. Make the following call for the DSM and CCM loname:

call atm$delete_ioname(ioname,"0"b,status);

dcl toname char(32),
status bit(18);

This call Immediately deletes the given ioname from the AT
and destroys the per-loname segment.

5. Store blanks in the and old_dsm_ioname entry in the current
(and only) ICB.,

6. Unlock the ICB.

7. Return to the DSM,

Quit Reporting
In order to allow processes to be signaled when a quit s

signaled on a device, there Is a special "trap_quits" grder call.
In response to such an grder call, a DSM makes the followling call
to the Attachment Module:

call attm$trap_quits(pibptr,proc_id,quit_event,cstatus);

dcl proc_id bit(36), /*1d of process to
receive event signal+/
quit_event bit(70), /*name of channel to be
signaled+/

pibptr ptr,
cstatus bit(18);

The Attachment Module takes the following steps 1In response to
this call:

1. Check the validity of the call. If the current valldation
level of the caller is higher than the validation 1level of the

caller of the original agttach call for the DSM, set bIit 8 of
gstatus and return.

2. |f either proc_id or quit_event is zero, set Icb.trap_quits
OFF and return.

3, Store proc_id In Icb.quit_id.

4L, Store quit_event in icb.quit_report_event,

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 23

5. Set icb.trap_quits ON.

6. Return.

Hangup Reporting
In order to allow processes to be signaled when a hangup occurs
on a device, there Is a special "trap_hangup" order call,. In

response to such an grder call, a DSM makes the following call to
the Attachment Module:

call attm$trap_hangup(pibptr,proc_1id,hangup_event,cstatus);

dcl proc_id bit(36),
hangup_event bit(70),
pibptr ptr,
cstatus bit(18);

In response to such a call, the Attachment Module takes the
following steps:

1. Check the validity of the call. |If the validation 1level of

the caller is higher than the validation level of the caller of
the original attach call, reject the call by setting bit 8 of

cstatus and return.

2. I f elther proc_Id or hangup_event is zero, set
icb.trap_hangup OFF and return.

3, Store proc_id in icb.hangup_id.
4, Store hangup_event In Icb.hangup_report_event.
5. Set Icb.trap_hangup ON,

6. Return.

Call to Get Reglstry File Name

The following call |s used by the DSM to find the name of the
Reglistry File with the highest level number for this loname:

call attm$get_rf(pibptr,type,name,cstatus);

dcl type char(32), /*type of the RF*/
name char(32), /*name of the RF=/
cstatus bit(18);

The followling steps are taken In response to this call:

3

MULTICS SYSTEM=PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 24

1. |If pib.typename Is equal to Iicb.dsm_rf_type, then set type =
icb.dsm_rf_type and pame = lcb.dsm_rf_name and return.

2., Otherwlse, look through the up array of the RF with type
ilcb.dsm_rf_type and name Icb.dsm_rf_name for an uptype equal to
pib.typename. |If one Is found, store the uptype Iin type and in
lcb.dsm_rf_type, store the upname In pame and in icb.dsm_rf_name,
and return. |If no such uptype Is found, set bit 9 of cstatus and
return,

Cleanup Internal Procedure

The gleanup procedure Is called to restore the RFs to thelr state
before attachment was started, to release reservations of
devices, unload devices, and destroy private DMPs. The following
call Is made to this routine:

call cleanup(icbptr,bdisp);
dcl Icbptr ptr,
bdisp bit(72);

It Is convenient to define a few temporary variable: LOOKONLY,
TRACEDOWN, TEMPLINK, DOWNTYPE, DOWNNAME (array), NDOWN, and
DOWNSLOT, which are copied out of a Registry File before an
attempt Is made to delete it.

The following steps are taken In response to the gleanup call:

1. Find the Registry File with type equal to icb.dsm_rf_type and
name equal to icb.dsm_rf_name. Otherwise, go to step 3.

2. |If the UNLOAD disposal mode is specified In bdisp and |If
TEMPLINK Is ON, then store blanks In the up(DOWNSLOT).uptype and
up (DOWNSLOT) .upname entries of the new RF.

3. Store zero in the In_use_sw in the RF,

4, Set TRACEDOWN equal to
rf.att_types(rf.present_type_index).trace_down. Set LOOKONLY
equal to rf.att_types(rf.present_type_index).look_only. ~ Set
DOWNTYPE equal to rf.att_types(rf.present_type_lndex).down_type
and set DOWNNAME equal o
rf.att_types(rf.present_type_Iindex).down_name. Set TEMPLINK

equal to rf.temp_link and set DOWNSLOT equal to rf.down_slot.

5. |If the RELEASE disposal mode Is specified In bdisp and if the
allocate bit In the RF Is ON, then make the following call to

deallocate the device:
call de_alloc$resource(rf.devices(l).resource_name,cstatus);

If gcstatus indicates that the device Is no longer allocated to
this user, go to step 11,

Lad

-/

MULTICS SYSTEM=-PROGRAMMER'S MANUAL SECTION BF.2,23 PAGE 25

6. |If the UNLOAD mode Is specified in bdisp, attempt to delete
this resource from the system by the following call:

call loam$delete_resource(rf.alloc_type,
rf.devices(l).resource_name,cstatus);

lgnore the value of gstatus.

7. |If NDOWN Is equal to 1, go to step 8. Otherwise, if NDOWN is
less than 1, go to step 11, |If it Is greater than 1 and 1{f the
RELEASE disposal mode 1Is specifiled In bdisp, then do the
following for each of the NDOWN elements of DOWNNAME,

a. Find the RF wtth the given type and name,

b. | f the allocate bit In the RF 1Is ON, call
de alloc$resource (see step 5 above).

Go to step 11,

8. If TRACEDOWN Is OFF or If LOOKONLY is ON, go to step 11,
9. Find the RF with type DOWNTYPE and name DOWNNAME(1).

10. Go to step 2.

11. |If a private DMP was created (l.e., icb.private_dmp is ON),
call the central supervisor to destroy the DMP,

12. Return.

Summary of Cstatus Blits

Inaccessible or non-existent Registry Flle

Unlinked or improperly linked Reglistry File
Unavalilable device

Attachment of DCM failed

No such type Iin att_types array of Reglistry Flle

No diverted path to revert

Attempt to revert or dlivert a presently diverted path
Validation level too high for trap qulits or trap hangup
calls

9 No Registry File with proper type found for get rf call
10 Bad mode or disp

11 System bug

12 Bad argument

CO~NOTUVME NN -

