
To: MSPM Distribution
From: J. F. Ossanna
Subj: BF.2.24

~""'"" Date: 9/28/67

,-. ..

In addition to minor corrections, the attached revision of
BF.2.24 contains the following changes.

1. nelemt Is described as a delayed use argument.

2. localattach replaces attach as a queu~ble call.

3. restart is added as a queuable call.

4. An error in the definition of status-mask match is corrected.

5. The driver's hand] ing of the status change flag (primary
status bit 10) is described.

6. Certain de ta i 1 s of driver operation have been added.

7. Arguments have been added to the rg~get s;;bsi!J and the
driyer$detach ca 11 s.

B. The status returned by the request queuer and driver is
dcta i 1 ed.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 1

Identification Pu~67 C> B"'/I'Aiof
The Working-Proces~IDevl~e-Manager-~rocess Interface. 7'
J. F. Ossanna.

Purpose

This section describes the Request ~ueuer anrl
Device-Manager-Process Driver. The Queuer is called within a
Device Strategy Module (DSM) to queue requests (outer calls)
heing sent to a Device Manager Process (DMP). The Driver ts
called by the DMP's Dispatcher to fetch a queued request and
issue the corresponding outer call to the first outer module in
the DMP's iopath. The Driver al,so plays various supporting roles
in general 1/0 System operation; a complete understanding of
these roles requires an understanding of Sections BF.2.23 and
BF.2.25.

General

Typically, an topath includes a Device Strategy Module (DSM)
which calls a Device Control Module (DCM) which calls the GIOC
Interface Module (GIM). For reasons detailed in Section BF.l.04,
independent and asynchronous operation of a lower portion of this
iopath ts desirable. Such operation is accomplished by including
the independent lower portion in a separate process, known as the
Device Manager Process (DMP). Inasmuch as program-device
synchronization (i.e. read-ahead and write-behind) ts Implemented
by the DSM, the process boundary must occur effectively inside
the DSM at what might be called the synchronization point. The
two functions which must straddle the boundary are queueing calls
to the DCM and forwarding queued calls to the DCM. The specific
implementation consists of incorporating all DSM functions except
the call forwarding function into a DSM In the user's working
process, and of incorporating the call forwarding function In a
module known as the DMP Driver in the DMP.

The DSM's per-ioname segment (IS) is the common data base between
the working process and the DMP. Thus all data communication
between these two processes can only involve data in the IS.

The queueing function is implemented in a procedure, known as the
Request Queuer, which is called by the main part of the DSM
whenever a call is to be queued. The queuer calls resemble outer
calls; the call names correspond to outer call names and the call
arguments include the necessary outer call arguments. Additional
arguments are included to control the response signaling from the
drive~. The queuer returns to the main part of the DSM after
queueing a request and signaling the DMP. Any waiting necessary
for synchronization purposes is done by the main part of the DSM.

Page 2 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

As a result of the signal set by the queuer, the DMP's Dispatcher
calls the driver. The driver fetches the next request,
reconstitutes the corresponding outer call, and Issues the outer
call to the first module (usually the DCM) in the DMP portion of
the. iopath.

The queuer communicates requests to the driver using the
auxiliary transaction block chain based In the DSM 1 s per-toname
base (PIB) (see Section BF.2.20). The per-request data is kept
in transaction block extensions (TBEs). There Is a one-to-one
correspondence between these blocks and the call transaction
blocks in the DMP corresponding to the forwarded outer calls.
The driver updates the request block status using the call block
status at every opportunity. Certain status conditions
(controllable by the DSM) cause the driver to signal response
events to the DSM.

The driver calls described in this section are the following.

d r I ve r$ I n I t
driver$iocall
driver$quit
driver$ restart
driver$hardware
drlver$detach

The driver$iocall call is the call used to cause the driver to
fetch queued requests. The functions corresponding to the other
calls are detailed later in this section.

Request Oueuer Calls

The Request Queuer Is a subroutine called by the main part of the
DSM whenever an outer call is to be,passed to the DMP. Calls to
the queuer to queue requests have the following general form.

call rq$name(pibp, . . . , s ta tus_ma s k,
cs ta tus);

comp_event,

del pibp ptr, /•PIB pointer•/

error_event, tbx,

status_mask bit (18), /•response control status mask•/
comp_event bit (70), /•completion event•/
error_event bit (70), /•error event*/
tbx bit (18), /•transaction block index•/
cstatus bit (18); /•rq call status•/

"name" In rgSname represents the outer call name of a queuable
outer call. Not all outer calls can be queued; see discussion
later below. The arguments between ~ and cstatus are the
corresponding outer call arguments In the regular order, except
that the first and last outer call arguments, loname and status
are omitted. For example, the call. to queue a read call Is as
follows.

.. MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 3

call rq$read(pibp, status_mask, comp_event, error_event, tbx,
workspace, offset, nelem, nelemt, cstatus);

~ is the pointer to the DSM 1 s PIB. status mask is an iS-bit
comparison mask used ultimately by the driver to decide when
comp event is to be signaled; the exact mechanism is explained
later below. error event is an event signaled by the driver
under conditions explained later below. tbx is returned and is
the transaction block index of the block allocated by the queuer
for this request. cstatus is the status returned for this call
itself; these bits are listed in Table 3. All the arguments
except ~and cstatus represent information provided to the
request queuer. The outer call arguments are defined and
declared In other sections of Section RF.

The call to queue an order call is an exception to the preceding
rule. Instead the following call is used.

call rq$order(pibp, status_mask, comp_event, error_event, tbx,
request, argptrl, argptr2, sizel, size2, cstatus);

del sizel fixed bin, /•arg@m~nt structure sizes In bits•/
size2 fixed bin;

~· regyest, argptrl, and argptr2 are the grder call arguments.
sizel and size2 are the sizes in bits of the argument structures
pointed to by argptrl and argptr2 respectively. The DSM Is
expected to verify all order calls received by it; either the
driving table or code used for this purpose must contain the size
values.

The status bit strings returned by the DMP are not stored in the
usual locations in the auxiliary transaction blocks (for a reason
discussed later below); Instead, the status for each request is
kept in each block's first transaction block extension. The
following call is provided to be used Instead of tbmSget chain
when chasing down chains which include auxiliary blocks.

call rq$get_chain(pibp, tbindex, type, orig, cnt, listptr,
cstatus);

Except for~, the arguments are Identical to those described
for tbmSget chain In Section RF.2.20. The queuer calls
tbmSget chain and then copies the status bit strings from the
corresponding transaction block extensions into the status
locations in the array pointed to by listptr before returning to
the main part of the DSM.

Other queuer calls are provided to
DSM. The receipt of an iowajt
alteration of the status mask
corresponding queued request. The
this purpose.

assist the operation of the
call to the DSM may Imply
and completion event for a
following call is provided for

Page 4 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

call rq$new_event(plbp, tbx, status_mask, comp_event, cstatus);

tbx Is the Index of the block corresponding to the request whose
;;sk and event are to be replaced. The DSM obtains this Index by
chasing the down chain based in the call block whose index is
provided by the oldstatus argument of the iowalt call (see
Section BF.2.20).

During error handling and restart operations it may be desirable
to reissue a previously queued request. The following call is
provided for that purpose.

call rq$reissue(pibp, tbx, cstatus);

tbx is the Index of the auxiliary block corresponding to the
request to be reissued. The queuer reuses the same block and.TBE
and appropriately reinitialtzes certain data before signaling the
Dt·!P. The position of the block In the auxiliary chain Is not
altered.

Request Queuer Operation

When the queuer recelves·a call to queue a request for a DMP, It
calls the TBM to allocate a new transaction block In the DSM's
auxiliary chain. That Is, the chain base pointer used is
computed from addr(plbp->plb.chaln_base.allndex). The queuer
does not set any hold bits at this or any other time. It Is the
DSM 1 s responsibility to set hold bit hold2 and/or arrange for
appropriate down-chain-Inclusion. Then the queuer allocates one
or more transaction block extensions CTBEs), all chained together
in the normal manner and based in the new block. The TBE chain
based In any block holds the arguments for that request; In
certain cases only relative pointers are kept pointing to
arguments elsewhere In the DSM's per-toname segment (IS). In
addition, the TBEs contain the status bit string, the status
mask, various events, and other data needed by the driver. Once
the TBE chain for a request is fully prepared, the TBM Is called
to store a relative pointer to the first TBE in the block, and
the iocall event is signaled.

Since the auxiliary transaction block chain is used by both the
queuer and ~he driver, which are in different processes, certain
uses of this chain require It to be locked to prevent
simultaneous access. The queuer locks the chain only when
accessing TBEs. The TBM lock on the Transaction Block Segment
(TBS) suffices during block allocation and modification and
during chain chasing. The locking is accomplished by calling the
Locker (see Section BY) with the auxiliary chain's lock list,
which Is located In the ICB.

The manner In which the queuer handles request arguments is
Influenced by whether an argument Is forward-only Information or ~
is Information to be returned by the callee In the DMP. In the
following discussion these two classes of arguments will be

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 5

referred to as "forward" and "return" arguments respectively.
Further, in the case of return arguments the behavior of the
queuer depends on the location (segment) of the return argument.

The following discussion treats the handling of the following
classes of arguments.

1. Fixed- and variable-length forward arguments.

2. Fixed- and variable-length return arguments located in the
DSM Is Is.

3. Fixed- and variable-length return arguments not located in the
DSH Is Is.

4. Two-way arguments (forward and return}.

s. Delayed-use arguments (e. g. read/write workspaces).

6. Order call argument structures.

The treatment of forward arguments is as follows.

1. Fixed-length, forward arguments are copied into the first TBE,
which is designed to hold same for all queuable requests.

2. Variable-length, forward arguments are copied
additional TBE allocated expressly for the argument. A
pointer to this TBE is stored in the first TBE, which
specific places for these relative pointers. The actual
the argument is also stored In the first TBE.

Into an
relative
contains
size of

The treatment of return arguments which are determined by the
queuer to reside in the DSM's IS is as follows.

1. Fixed-length, return arguments in the IS have only a relative
pointer to them stored in the first TBE.

2. Variable-length, return arguments in the IS have both a
relative pointer to them and their size stored In the first TBE.

This treatment allows the DMP driver to store the returned value
into its final IS 'location immediately upon return from first
module in the DMP's iopath. Two constraints should be noted.
First, the returned argument cannot be updated subsequent to the

/~ original return to the driver. Second, it Is the DSM's
responsibility to see that the storage in the IS for the argument
is not prematurely deallocated.

The treatment of return arguMents which are determined by the
,,_ queuer not to reside rn the DSM's IS is as follows.

1. Fixed-length, return arguments not in the DSM 1 s
allocated storage in an additional TBE, and the relative

IS are
pointer

Page 6 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

stored in the first TBE is set to point to the freshly-allocated ~
space.

2. Variable-length, return arguments not in the IS are handled as
above except that the size is also stored in the first TBE.

Inasmuch as the driver, does not know that the returned value is
being stored into a temporary location rather than into the final
location, it is the responsibility of the queuer to copy the
value from the temporary location into the final location. Under
these circumstances, the queuer does not return to the main part
of the DSt:, but waits for a return response event from the
driver.

Two-way arguments are trP.ated exactly like return arguments
except for the following: (1) after temporary space (an
additional TBE) Is allocated by the queuer, the queuer must copy
the original value into the temporary space; and (2) the driver
must provide this copy in the reconstituted call. At the time of
this writing, no two-way arguments occur among any of the
queuable calls.

Delayed-use arguments are ones which may be used (read or
written) by a callee subsequent to the return of the original
call. The only arguments admitted to this class are workspace
and nelemt in the~, write, readrec, and wrjterec calls. In
the workspace case, the workspace pointed to is loosely regarded
as the argument. When the queuer is called to queue a read/write
call, workspace and nelemt ~be located in DSM 1 s IS. The
queuer will store relative pointers to the workspace and to
nelemt In the first TBE. The driver will reconstitute the
workspace pointer when passing the outer call to the callee in
the D~1P. It Is the responsibi 1 ity of the DSM not to cause
premature deallocation of oelemt and the workspace.

It should bP. noted that nelemt is treated
argument on 1 y by the DSt1, queuer, drIver, and
the normal definition of nelemt is that of an
argument.

as a delayed-use
modules In the DMP;
ordinary returned

The order call contains two pointers, argptrl and argptr2 which
point to a forward data structure and a return data structure
respectively. The forward structure is treated like a
variable-length forward argument and the return structure like a
variable-length return argument. The DSM must provide the
structure sizes in bits to the queuer. The queuer and driver
internally treat these structures as bit strings. It is presumed
that the DSM screens order calls and accepts only those which are
relevant; the table or procedure which implements this screening
can contain the sizes.

gueuable Outer Calls

.. ~

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 7

Not all outer calls are appropriate calls to send to a DMP via
the queuer. For example, calls relating to read and write
synchronization are intended for the DSM and need not be
queuable. The upstate call need not be queuable because the
status available in the DSM's auxiliary (queuer) transaction
blocks is as up-to-date as Is possible. A complete list of
queuable outer calls is given in Table 1, attached to this
Section.

Completion Response Control

When the DSM calls the queuer to queue a request, the DSM
supplies a status mask, a completion event, and an error event.
The mask is used by the driver to determine when the completion
event should be si~naled. The driver signals the error event
instead, if the driver determines that the completion condition
can never occur. If the completion event is zero (event not
supplied), the mask is used to control triggering of the error
event.

When the return to the driver occurs following the forwarding of
the outer call, the driver copies the status returned by the
callee into the corresponding DSM auxiliary transaction block.
Every time the driver receives a return on subsequent calls the
driver updates the status of all outstanding calls by copying the
status from the blocks in the callee's call transaction block
chain into the corresponrling blocks in the DSM's auxiliary block
chain.

The status mask is an 18-bit string whose bits correspond to the
18 primary bits {1-18) of the returned status bit string. Every
time the driver stores a new status bit string, the driver
compares the new primary bits against the status mask. The
following describes the signaling algorithm. Once either event
is signaled, no further events will ordinarily be signaled for
that request. The status mask is said to match the status if all
the bits equal to one in the mask are also equal to one in the
p r i rna r y status b i t s (i • e • (r.1a s k) or (p r i rna r y) = (p r i rna r y)) •

1. If the mask does not match the status and status bit 5 is zero
and the completion event is nonzero, no signal Is set.

2. If the mask does not match and status bit 5
status change) and both the completion and
nonzero, the error event is signaled.

is one {no
error events

more
are

3. If the mask matches the status and the completion event is
nonzero, the completion event is signaled.

4. If the mask matches the status and the completion
zero and the error event Is nonzero, the error event is
The mask can be used to control error signaling
completion signal is requirerl.

event is
signaled.

when no

Page 8 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

5. Under any other conditions no events are signaled.

The driver keeps an event-signaled flag in the first TBE. This
flag is reset by the queuer upon receipt of an rqSnew event or an
rq$reissye for a previously-queued request. Table 2 attached to
the end of this Section summarizes the primary status bits for
convenience. It should be noted that bits 11-13, and 18 will
never be set to one by the driver.

The DSt! normally specifies a nonzero completion and error event
when it intends to subsequently call the wait coordinator to wait
on the event(s). See Section AF.2.21 for a general discussion of
the behavior of a generic DSM.

Norma 11 y the queuer returns to the DS~1 prompt 1 y after queuing the
request and signaling the DMP. Upon said return the DSM may or
may not choose to wait on events. In an earlier discussion of
request queuer operation, a situation was revealed under which
the queuer did not promptly return. When confronted with a
request having a return argument not located in the DSM's IS, the
queuer must itself wait for the returned value. A third event,
called the return event, is defined for this case; this event is
created only by the queuer. If this event Is nonzero at the time
the driver gets the original return from the callee, the driver
signals the return event. If conditions are also met for
signaling either the completion or error event, that event is

, also signaled.

Request Queuer Data Bases

The request queuer utilizes the name of the "iocall" event, the
DMP's process identification, and the auxiliary chain's lock list
from the lnterprocess Communication Base (ICB); it also uses the
auxiliary chain base indices and the allocation area in the DSM 1 s
PIB. Except for the foregoing, the queuer uses only per-request
data bases. The pointer to the ICB is computed from:

icbp = ptr(pibp,ptr(pibp,O)->hrlr.relp.icb);

Declarations for the ioname segment header (HDR) and the PIB may
be found in Section BF.2.20; the declaration for the ICB may be
found in Section BF.2.23.

The primary per-request data base is the first TBE allocated for
the request. This TBE contains all the items needed for general
queuer and driver operation and has items corresponding to all
fixed-length, forward request arguments. This TBE also contains
the sizes of variable-length arguments and relative pointers,
when necessary, pointing to variable-length arguments or to
return arguments not located In the DSM 1 s IS, all of which are
located In additional TBEs. These additional TBEs are allocated
expressly for each such argument.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 9

The declaration for the first (primary) TBE follows.

del 1 rqtbe based (p),
2 chain,

3 next_tbe bit (18),
3 last_relp bit (18),

2 call_type fixed bin,
2 status bit (144),

/•request queuer main TBE*/
/•standard TBE chaining*/

/•call type index•/
/•queued-call status•/

2 bits,
3 s tat us _.mas k b i t (18) ,
3 dmp_tbx bit (18),

/•response control status mask•/
/•callee call block index•/

3 event_sig bit (1),
2 comp_event bit (70),

/•event signaled flag, !=signaled*/
/•completion event•/

2 error_event bit (70),
2 return_event bit (70),
2 proc_id bit (36),

/•request argument
2 (al,a2) char (32),
2 bl bit (144),

/•error event•/
/•return event•/
/•calling process id•/

data* I
/•fixed-length forward items•/
I* II */

2 (c1,c2,c3,c4,c5,c6) fixed
2 re 1 p,

bin {35), I* ", also variable item sizes*/

3 (rl,r2,r3,r4) bit (18); /•relative pointers to variable Items•/

Any items in the preceding declaration which have not yet been
discussed are discussed later below. The number of each kind cf
item is determined by the needs of the queuable calls; the
addition of new calls may require extension of this primary TBE.

The declaration for the additional TREs required for variable
return arguments depends on the specific call being queued.
example, the Jocalattach call has a variable-length
argument; it requires the following extra TRE.

del 1 rqtbel based (p1),
2 chain,

3 next_tbe bit (18),
3 last_relp bit (18),

2'mode1 char (N);

/•localattach TBE•/

/•N=length (mode)•/

or
For

mode

The length of~ is stored in (p->rqtbe.c1). ~and joname2
are stored in (p->rqtbe.a1) and (p->rqtbe.a2) respectively;
ptr$rel(addr(pl->rqtbel.model)) is stored in (p->rqtbe.rl).

As another example, consider the readrec call. N = reccount is
stored in (p->rqtbe.cU. The following extra TBE is allocated.

del 1 rqtbe2 based (p2), /•readrec TBE*/
2 chain,

3 next_tbe bit (18),
3 1 as t_ re 1 p b i t (18) ,

2 neleml (N) fixed bin (35), /•N=reccount•/
2 offset (N) fixed bin (35),
2 relp,

Page 10 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

3 workspace! (N) bit (18); /•workspace relative pointers•/

Relative pointers to all four of these variable items are stored
in the primary TBE.

The call type indices, mapping details, and
declarations for all the queuable calls are given in
(to be attached to a later version of this Section).

~Device-Manager-Process Driver

extra TBE
Appendix 1

The DMP Driver is called only by the DMP Dispatcher (see Sections
BF.2.23 and BF.2.25). Much of the operation of the driver when
forwarding calls hos already been mentioned in earlier
discussion. The following discussion describes the driver
operation upon receipt of various colls.

The driver's pri~ary data bases are
allocated by the queuer. The driver also
chain base indices from the DSM's PIR. In
stores return arguments into the DSM's IS.
are directly accessed.

the per-request TBEs
needs the auxiliary

addition, the drivP.r
No other data bases

The following is a declaration for some arguments used In most
calls to the driver.

del ioname char (32), I* callee's ioname *I
pibp ptr, I* ptr to DSM's PIB */
cstatus bit (18); I* driver call status *I

The ioname of the module to be called is created by the
dispatcher at attachment time and is not supplied by the user's
DSM. ~ is a pointer to the DSM's PIB. cstatus is used
primarily to report the status of the iopath to the dispatcher;
these status bits are listed in Table 3. The path conditions
reported include: (1) internal quit detected; (2) device absent
from channel; and (3) iopath detached.

Because the driver is concerned with the DSM's auxiliary blocks
in the user's TBS, the TBM must be called to switch to using the
user's TBS. This call is made by the Dispatcher prior to calling
the driver; the driver will call the TBM to reset the TBS to
normal prior to calling the first outer module in the DMP topath.
Upon return, the driver makes no calls to the TBM requiring the
user's TBS. Another function performed for the driver by the
Dispatcher is the locking and unlocking of the DSM's auxiliary
chain.

The following steps summarize the Dispatcher functions performed
for the driver.

1. An attempt is made to lock the DSM's auxiliary chain; the
Locker is called with the auxiliary chain's lock list (in the
ICB) and with an event. If the attempt fails, the Locker returns

,-. ..
MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 11

having stacked the event in the lock list, and the Dispatcher
does not call the driver. Following a subsequent wake-up due to
the event, the Dispatcher repeats the lock attempt.

2. After the auxiliary chain is locked, the Dispatcher calls the
TBM to switch to using the user's TBS (see Section BF.2.20). An
event is provided for the TBM to use in its calls to the Locker.

3. The driver is called.

4. If the driver returns Indicating that it could not perform its
function because the user's TBS was in use, the Dispatcher
arranges to call the driver again later, when the unlocking of
the user's TBS causes a wake-up associated with the event
provided the TBM.

s. Upon return from the driver, the auxiliary chain Is unlocked.

\Jhen the request queuer signals the iocall event, the DMP
Dispatcher wakes up and calls the driver with the following call.

call driver$iocall(io~ame,plbp,cstatus);

The driver then performs the following functions.

1. Using ..!2.L.!2Q, the DS~1 1 s auxiliary chain base indices are
obtained. tbm$get chain Is called to chase the auxiliary chain.
The oldest queued request which has not yet been forwarded is
located and becomes the current request. If the TBM returns
lnrltcating that the TRS was locked, the driver returns to the
Dispatcher indicating that the call could not be performed for
that reason.

2. An outer call corresponding to the current request Is
reconstituted. In the case of an abort call, bits 127-144 of
oldstatus are set equal to (p->rqtbe.bits.dmp_tbx). The TBM is
called to switch the TBS back to normal, and the outer call Is

1-. t ssued usIng i oname.

.-

3. Upon return a h2lQ call Is issued to the TBM to hold the
callee 1 s call transaction block. The corresponding call block
index is stored in the first TBE for future correlation.
tbm$get chain is called to chase the entire callee call chain and
obtain all the block Indices and available status.

4. By matching these call block indices against those
each first TBE, the auxiliary and corresponding call
be correlated. Any unmatched call block Is released
release. Any call block yielding a status bit string
equal to one is released.

stored in
blocks can
by calling
with bit 5

5. The status bit strings of the current and all older matched
(to call blocks) requests are updated. Each request's status bit
string is stored In the request's primary TBE rather than in the

Pat;e 12 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

auxiliary block, to avoid using a possibly locked TBS. In each
case the status mask is compared wf th the status to determine ...J
whether any events need t6 be signaled. During this status
updating, the driver compares the old and new status bit strings
(ignoring bit 10 and bits 127-144); if the new status differs
from the old, status bit 10 is set equal to one, otherwise bit 10
is set to zero. In the case of the current request where status
is being stored for the first time, status bit 10 is set to zero.
In addition, bits 127-144 of the stored status are set to the
transaction block index of the corresponding auxil fary block.

6. If the current return event is nonzero, the return event Is
signaled.

7. The driver returns to the Dispatcher. Only one request is
forwarded at a time; existing additional requests result in
subsequent calls to the driver.

When an lopath is to be created In the OMP, the Dispatcher issues
the following call.

call driver$init(ioname,pibp,cstatus);

This call Is handled identically like driver$ioca11, except that
only a localattach call can be forwarded. If the current request
is not a localattach call, the driver returns to the dispatcher
with cstatus indicating that the path is not attached.

When a real or simulated hardware Interrupt event occurs for the
iopath, the Dispatcher Issues the following call.

call driver$hardware(ioname,pibp,cstatus);

This call is handled similarly to driver$joca11 except that any
current request is ignored and an internally generated upstate
call is issued instead. All status updating and event signaling
occurs norma 11 y.

When an quit event occurs, the Dispatcher issues the following
call.

call driver$quit{ioname,pibp,int_quit,cstatus};

The argument int quit is a one-bit string; if one, the iopath is
already in internal quit condition. If int quit is zero, the
driver handles the call similarly to driver$hardware except that
an internally generated abort call is forwarded with its
oldstatus argument equal to zero. Status updating and event
signaling occur normally except that the driver adds the
abort-due-to-quit status bit (bit 15) to the status of
freshly-aborted requests. If any unprocessed requests exist in
the auxiliary chain, the driver sets status bits 5, 6, 14, and 15
equal to one to simulate an abort due to a quit. If int quit is
one, only the latter simulated aborts need be performed; event

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 13

signaling occurs normally.
Dispatcher.

The driver then returns to the

,,......._ ~vhen an lopath is to be restarted, the Dispatcher makes the
following call.

call drtver$restart(pibp,reset,cstatus);

The argument reset is a one bit string indicating whether or not
the lopath Is to be reset before restarting. The restart
mechanism involves the DSM's observing that some requests have
been aborted due to a quit. The DSM usually reissues such
requests unless the reset status bit (bit 16) is one. Using
tbm$get chain, the driver obtains the status bit strings for all
the requests in the DSM's auxiliary chain. Any request having
status bits 14 and 15 equal to one (aborted due to quit) now have
bit 16 (the reset bit) set equal to reset. Any nonzero error
events for these blocks (with bits 14 and 15 one) are signaled.
The driver returns to the Dispatcher.

If the Dispatcher needs to eliminate an iopath, it makes the
following call.

call driver$detach(ioname,pibp,cstatus);

The driver issues a detach call with toname1 = joname and ioname2
equal to a null character string. The disposal argument contains
the "t1/\X" detach propagation mode and other modes necessary to
prevent outer modules in the iopath from disturbing the attached
device. A successful detachment is reported in cstatus.

Page 14 MULTICS SYSTEM-PROGRAMMER'S MANUAL

Table 1.

List of outer calls queuable by Request Queuer.
Return or delayed-use arguments are underlined.

Queuable Outer Calls

localattach(ioname1,type,ioname2,mode,status)

detach(ionamel,Joname2,disposal,status)

restart(ioname,status)

changemode(ioname,mode,status)

getmode(ioname,bmode,status)

worksync(ioname,wkmode,status)

abort(ioname,oldstatus,status)

format(ioname,epl,epw,tsl,tsw,down,Jndent,status)

tabs{ioname,tmode,hv,ntahs,tabl ist,status)

order(ioname,request,argptrl,argptr2,status)

getsJze(ioname,elslze,status)

setsize(ioname,elsize,status)

read(ioname,workspace,offset,nelem,nelemt,status)

write(ioname,workspace,offset,nelem,nelemt,status)

Section BF.2.24

setdelim(ioname,nbreaks,breakllst,nreads,readlist,status)

getdelim(ioname,nbreaks,breaklist,nreads,readlist,status)

seek(ioname,ptrnamel,ptrname2,offset,status)

te1J{ioname,ptrnamel,ptrname2,offset,status)

readrec(Joname,reccount,workspace,offset,nelem,nelemt,status)

writerec(ioname,reccount,workspace,offset,nelem,nelemt,status)

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 15

Table 2 •

. ~ Summary of primary status bits.

!ill

1

2

3

4

5

6

7

8

,-._ 9

10

11

12

13

14

15

16

17

18

!·1ean j ng when ~ .t.Q value .::..1.

successful logical initiation (see Section BF.1.04).

successful logical completion (see Section RF.l.04).

successful physical Initiation (see Section BF.1.04).

successful physical completion (see Section BF.1.04).

transaction terminated (no more status change).

serious or fatal error (nonzero bits in 19-54).

advisory status or nonfatal error (nonzero bits in 55-90).

call-oriented status (nonzero bits in 91-108).

hardware status (nonzero bits in 109-126).

new status bits set (used during status exchange).

unassigned.

unassigned.

unassigned.

transaction aborted.

abort was due to quit condition.

reset condition (transaction not to be restarted).

device absent from channel.

sync control; return condition (see Section BF.2.02).

Page 16 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.24 ,

Tah 1 e 3. -.....1

Status returned by the Request Queuer for all calls except
rq$get chain. The latter call returns the same status as the
tbmSget chain call (see Section BF.2.20, Table 1}.

ill Meaning when ~ ..t..Q ~

1 fatal TBM error.

2 fatal ICF (lnterprocess Communication Facility) error.

3 delayed-use argument not In per-ioname segment.

4 invalid transaction block Index (new event and reissue}.

5-18 unassigned.

Status returned by the Driver.

ill Mean i ng ~ ..§J:.l !Q. ~

1 fatal TBM error.

2 fatal ICF error.

3 user TBS locked.

4 missing or invalid current request.

5-15 unassigned.

16 path detached condition.

17 device absent from channel.

18 internal quit condition.

