
/
I
/

·l MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2.25

Identification

The Dispatcher

Pub llshed:
(Supersedesa BF.2.25.

R. c. Daley and s. I. Feldman

euroose

01/10/68,
08/14/67)

PAG! 1

The Dispatcher Is the module In each Device Manager Process that
Is the Interface between the Wait Coordinator and the Driver.
The Dtspatcher Is called when certain events are signaled by
Device Strategy Modules In other processes. The Dispatcher
handles six types of event channel: reassign, reenable, locall,
qutt, restart, and hardware. The baste data base ·for the
Dispatcher Is the Process Dispatching Table, which contains
Information on each of the devices that may be controlled by that
process.

Introduction

In order to permit quick response to hardware Interrupts, 1/0
devices are controlled by special processes called Device Manager
Processes (DMPs). There are two classes of DMP, the universal
DMP and the private DMP. A universal DMP can handle many devices
for many different users; a private DMP can handle a single
device for a single user. A private DMP Is a member of the user
group for which the device Is to be run. The Dispatcher Is the
module to each DMP that handles event signals for any number of
devices for any number of users. The basic data base of the
Dispatcher Is the Process Dispatching Table (PDT). This table is
created before the DMP Is Initialized and contains an entry for
each of the devices that the DMP may control.

It Is assumed that the reader Is familiar with the Watt
Coordinator and theconcept of an "event channel" (see Section
BQ.6). The Dispatcher Is responsible for creating certain event
channels and for handling signals on those channels. The
Dispatcher operates In conjunction with the Attachment Module
(Section BF.2.23), with the Request Queuer, and with the Driver
(Section BF.2.24).

In the following descriptions, an event call channel is
"disabled" by declaring It to be an event walt channel and Is
"enabled" by declaring it to be an event call channel associated
with the proper procedure.

The following Is a summary of the event channels that are of
interest to the Dispatcher:

MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2.25 PAGE 2

~~ There Is one "reassign" event channel (relative priority 6)
DMP. It Is signaled whenever the status of this process as
control user of a device Is changed.

per J
the_,

There Is one "quit"
device assigned to a
the Dispatcher calls
device to stop.

event channel (relative priority 2) per
DMP. When that event channe 1 Is sIgna 1 ed,
the ~ entry of the Driver to make the

There Is one "restart" event channel (relative priority 3) per
device assigned to a DMP. When that event channel Is signaled,
the Dispatcher calls the restart entry of the Driver to restart
the path. This channel Is enabled only when the route Is In
external quit condition.

There Is one "hardware" event channel (relative priority 4) per
device assigned to a DMP. This channel Is signaled whenever a
hardware Interrupt Is received for the device. In response, the
Dispatcher calls the hardware entry of the Driver.

There Is one "locall" event channel (relative priority 5) per
topath per channel assigned to a DMP. This channel Is used to
1 nform the DrIver that there Is a new I /0 ca 11 In the Request
Queue·, to force the Dispatcher to create a new Jopath,to cause
pushed-down paths to be deleted, and to restart a path that has
been quit.

There Is one "reenable 11 event channel (priority l) per lopath per
channel. Normally, this event channel Is disabled. When certain
data bases are found to be locked, the Dispatcher disables the
other three per-device channels and temporarily enables this
channel. When It Is signaled, the event channel Is disabled and
the other event channels are re·enabled.

The Drtver gets the list of Transaction Block Extensions
containing outer call requests by calling the get chain entry of
the Transaction Block Maintainer (see BF.2.20). However, those
transact1on blocks are located In the user's TBS, and not
necessarily In the DMP's TBS. Therefore, before each call to the
Driver, a call Is made to tbmStbs to temporarily switch TBS
segments and to change the locking strategy. Also, the auxiliary
transaction block chain Is locked using the first lock list in
the ICB.

Throughout this paper, 11 cstatus" Is a bit string of length 18
which contains status Information on a particular call.

lbA process Qlsoatcblng Table

The Process Dispatching Table has an entry for each device that
may be controlled by a given DMP. The PDT Is created and
Initialized with the names of the devices to be controlled before ~
the DMP Itself Is inltl~llzed. The following Is a declaration of

,.

·~

,.-,

•
,,-"

.MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2.25 PAGE 3

the PDT:

del 1 pdt based(p),
2 lnlt_proc char(32),

II

II

2 dmp_proc_ld blt(36),
II

2 reasslgn_event blt(70),
It

It

2 creator_ld blt(36),
II

2 lnlt_done_event blt(70),
II

It

2 current ptr,
" "

2 pdt_name char(32),
" 2 dtabp ptr,
"

2 dlsp_ptr,
II

3 reassign ptr,
3 I oca 11 ptr,
3 reenab 1 e pt r,
3 restart ptr,
3 quit ptr,
3 hardware ptr,

2 nroutes fixed bln(l7),
2 routes (n),

It

It

3 type charC32),
3 resource_name charC32),
3 user_ld char(SO),
3 loname charClS),
3 plbp ptr,
3 lcbp ptr,
3 tbsp pt r,
3 att_stack ptr, ..
3 loca11_event bltC70),
3 restart_event blt(70),

II

/•Process Dispatching Table•/
/•name of procedure to be

called for Initialization.
Equal to "dlsp$lnlt"•/

/•ld of this Device Manager
Process•/

/•event channel to be signaled
when device Is assigned or
unassigned to this process•/

/•ld of process that created this
Device Manager•/

/•event channel to be signaled when
Initialization of this process Is
complete.•/

/•pointer to element of routes
for device for which work
Is being done at present•/

/•name used by other processes to -
find PDT•/

/•pointer to Drlver"s driving
table•/

/•pointers to entry points of
the Dispatcher•/

/•number of entries In routes array•/
/•an entry for each device which

may be assigned to this process.
n • pdt.nroutes•/

/•type of resource•/
/•resource_name for this device•/
/•user to whom device Is assigned•/
/•DCM loname, a unique character string•/
/•pointer to PIS for this DSM•/
/*pointer to ICB for DSM•/
/•pointer to Transaction Block

segment In user"s group
directory•/

/•pointer to entry In attach stack
area for pushed-down DCM•/­

/•event to be signaled by DSM
for localllng, resetting,
Inverting, and diverting•/

/•signaled to restart a path
In external quit condition•/

•

MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2.25 PAGE 4

I*

•I

3 hardware_event blt(70), /•event channel signaled when
" interrupt received from device•/

3 qult_event bit(70),
II

/•event to be signaled to stop
device and prepare for a divert•/

3 reenable_event blt(70), /•signaled when auxll lary
" chain or TBS Is unlocked*/

3 device_absent blt(l),
3 assigned blt(l),

II

3 attached blt(1),
II

3 ext_quft blt(l),
II

3 int_fiult blt(l),

/*1 If device not present*/
/•1 If device assigned to this

process•/
/•1 If attach call has been

Issued*/
/*1 If device In external quit

condition*/
/•1 If device In internal (hardware)

quit condition*/
2 attach stack area((10000));/•area Into which blocks are

· W allocated for diverted paths*/

del 1 att_thread based(p), /•declaration of block to be
allocated into att_stack
area for pushing down of
DCMs*/

It

II

"
2 loname char(lS),
2 locall_event blt(70),
2 reenable_event blt(70),
2 pi bp ptr,
2 icbp ptr,
2 status,

3 attached bit(l),
3 ext_qult blt(l),

2 next ptr;
II

/•DCM loname*/
/•event channel name*/
/•event channel name*/

/•points to next block in thread
of pushed-down DCMs*/

The creating process allocates the PDT, stores Its process ld In
pdt.creator_ld, stores the name of an event channel in
pdt.lnlt_done_event, stores the value of N In pdt.nroutes, and
stores the name of one of the devices associated with each route
In resource_name. The character string "dmp$1nlt" Is stored In
pdt.inlt_proc.

When the Walt Coordinator makes a call to the Dispatcher In
response to an event signal, it calls with a pointer argument.
This pointer points at an element of the routes array. The
Dispatcher uses an auxiliary structure "route" with a declaration
equal to the declaration of an element of "routes" In conjunction
with this pointer to access one of the relevant entries In the
PDT.

/
MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2.25 PAGE 5

pevice Manager Initialization

After the PDT Is created, the creat1ng process makes a call to
create oroc with the path name of the POT as argument. This
causes a process to be created, It causes the PDT to appear in
the new process's process directory, and It causes a call to the
procedure whose name equals the first 32 characters of the new
segment. Therefore, the first 32 characters of the PDT contain

" the ~trlng 11dlsp$1nlt 11 • The following call Is made:

call dlsp$1nlt(pdtptr);
del pdtptr ptr;

The gdtotr (a pointer to the POT) Is stored In Internal static
storage, and then the following call Is made:

call dmp$1nlt(pdtptr);

The following steps are taken In response to that call:

1. The process ld of the OMP Is stored In pdt.dmp_proc_ld.

2. The attach_stack area of the PDT Is Initialized.

3. The assigned bit for each route Is set OFF.

4. When an event channel Is declared to be an event call channel
(see BQ.6.02), a pointer to the procedure to be called when the
channel ts signaled must be provided. Call · generate_ptr (see
BY.l3.02) to get pointers to the six entry points of the
Dispatcher called by the Waft Coordinator. Coordinator and store
them In the corresponding entries of pdt.dlsp_ptrs.

s. The reassign event channel Is created and declared to be an
event call channel. Whenever that channel Is signaled, the Walt
Coordinator will make the following call:

call dlsp$reasslgn(null,event_ln.dlcator);

The eyent lndlcatgr Is an array of three 70-blt
containing the event channel name, the event id, and the
process ld. The event_lndlca~or Is passed as the second
of all calls to the Dispatcher, but will be Ignored.

6. Signal the fnlt_done_event for process creator_td.

strings
sending

argument

) 7. Initialize the Transaction Block Maintainer by making the
following call:

ca 11 tbm$1 nIt (11 1 11b, cs tat us);

8. Return.

···=-

MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2.25 PAGE 6

IhA Inter-Process ~ynlcatlon Block

The lnterprocess Communication Block (ICB) Is a part of the DSM's
per-loname segment (IS) and contains Information used by the
Attachment Module, Request Queuer, and Dispatcher. For
completeness, a declaration of the ICB Is Included here. For a
discussion of how this data base Is allocated and Initialized,
see BF.2.23.

The following Is a declaration of the ICB.

del 1 lcb based (p), /•Inter-process communication block•/
2 queue_lock_llst blt(144), /•standard lock for request queuing•/
2 locall_event blt(70), /•event channel name•/
2 dmp_proc_ld bit (36.), /•device manager process ld•/
2 dmp_user_td char(SO), /•user ld of dmp If not private•/
2 prlvate_dmp blt(1), /•1 If a private DMP was created•/
2 qult_event blt(70), /•event name•/
2 restart_event blt(70), /•name of event channel to be signaled

" to restart path In DMP without
11 passing an outer call•/

2 reset blt(1), /•set to 1 to cause a reset
11 of a 11 ca 11 s In request queue
" when next restart Is done•/

2 Invert blt(1), /•set to 1 to cause diverted paths
" In DMP to be detached•/

2 tnvert_event blt(70), /•name of event channel to be
11 signaled when Inversion complete•/

2 divert blt(1), /•set to 1 to cause present lopath
" to be quit•/

2 dlvert_event blt(70), /•name of event channel to be
11 signaled when diversion complete•/

2 trap_qults bit (1), /•If 1,stgnal If quit occurs
" on device•/

2 overseer_trap_hangup blt(1), /•If 1, signal overseer If
" hangup occurs on device•/

2 trap_hangup blt(1), /•If 1, signal If hangup occurs on
" device•/

2 qult_ld bit (36), /•ld of process to be signaled on quits•/
2 overseer_ld blt(36), /•process ld of overseer•/
2 hangup_ld blt(36), /•ld for process to be signaled

11 when device hangs up•/
2 qult_report_event'blt(70), /•event signaled If device quit•/
2 overseer_hangup_report_event blt(70), /•event to be

11 signaled If hangup occurs•/
2 hangupnreport_event

2 diverted blt(1),
" 2 dlvert_type blt(l),
II

blt(70), /•event to be signaled If
device hangs up•/

/•1 If this loname has been
diverted•/

/•when diverting, set to 1 If
the two loname arguments are

,,-.....

~:

MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2.25 PAGE 7

11 equa 1 */
2 alloc_down blt(l), /•how this registry file was reached.

" If ON, devIce of gIven type was
11 allocated and name returned.
11 Otherwise, name came from description
11 argument of call.•/

2 dsm_rf_type char(32), /•type of first RF <highest level)*/
2 dsm_rf_name char(32), /•name of first RF*/
2 dcm_type char(32), /•type to be used In attach

" calls to the DCM*/
2 dcm_descrlptlon char(32), /•description to be used In attach

" ca 11 s to the DCM*/
2 nchar_dcm_mode fixed bln(l7), /*number of characters

" In dcm_mode* I
2 dcm_mode_relp blt(l8), /•relp to character string

" equa 1 to mode of DCM* I
2 old_dsm_toname char (32), /*previous dsm toname•/
2 new_ts_name char(32), /•for use when diverting.

11 Name of new
" per- loname segment*/

2 dcm_toname char(32), /•for possible future use In
11 hand 11 ng NODMP mode* I

2 old_dcm_toname char(32), /•same as above*/
2 lcb_lock_llst blt(l44), /•standard lock•/
2 lnvert_proc_td blt(36), /•response event for Invert•/
2 dlvert_proc_ld blt(36); /•response event for divert*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 8

Deylce Reassignment

Whenever the AttachMent Module assigns a device to a user group,
ft signals the reassign event for the appropriate DMP. This
causes, as described above, a call to dlspSreasslgn. In response
to thfs call, the following Is done for each element of the
routes array In the PDT:

1. Make the following call to the Device Assignment Module (see
Section BF.2.26):

call foam$get_asslgnment(type,resource_name,user_fd,cstatus);
del resource_name char(32), /•from the PDT•/

user_fd charCSO), /•return argument: user to whom
device Is assigned•/

cstatus bJt(3); /•status for this call•/

If cstatys Is zero, then this DMP Is the control user for this
device. If bit 1 ts ON, then there Is an error In the PDT: the
device does not exist. Otherwise, this DMP Is not the present
control user for this device.

2. If this DMP Is not the control user for this device, then

a. If the assigned bft In the route Is OFF, then go on to
the next route In the PDT.

b. If the assigned bit Is ON, then call the Internal detach
procedure and then go on to the next route in the PDT.

3. If this DMP Is the control user for this device, then

a. If the assigned bit fn the PDT entry Is OFF, go to step
4.

b. If the assigned bit In the PDT entry Is ON and if the
user_ld In the PDT entry Is equal to the assigned user of
the device, go on to the next route In the PDT.

c. If the assigned bit In the PDT entry Is ON but the user
ids do not match, call the Internal detach procedure and
then go on to the next step.

4. Store the user_ld returned by the lOAM In the user_ld entry
In the PDT.

5. Create a unique name (by a call to unlque_chars) and store
that name In the loname entry for the route,

6, Initiate the per-loname segment CIS), which can
link with name equal to the resource_name In the
directory. (Use the name created In step 5 above
name.) Using this pointer and relative pointers
loname segment header, get pointers to the PIB and

be found by a
user's group
as the call

in the DSM
to the res.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 9

Store these pointers In plbp and lcbp, respectively.

7. Set the assigned bit ON, set the attached, ext_qult, and
lnt_qult bits OFF.

8. Create the reenable, locall, quit, restart, and hardware
event channels and declare them to be event call channels. If
the assigned user of the device Is not the same as the present
user, give the assigned user access to these event channels.

t When these channels are signaled, the Walt Coordinator will call
the corresponding entries of the Dispatcher with a pointer to the
appropriate element of the routes array as an argument. Store
the event channel names In the corresponding entries In the PDT.
Disable the hardware, quit, restart, and reenable event channels.

9. Find the Transaction Block Segment (TBS) In the user's
directory and store a pointer to It In the tbsp entry In the PDT.

10. Go on to the next entry In the PDT.

When all entries In the PDT have been checked, return to the Wait
Coord I nato r.

Oylt Conditions

~"" A route Is In one of three "quit conditions": no quit, Internal
quit, and external quit. The normal condition Is no quit. If

~ the trap_qults bit Is OFF In the ICB when a hardware quit Is
detected, the path Is restarted and the route remains In no quit
condition. If the trap_qults bit Is ON when a hardware quit Is
detected, the path Is placed In Internal quit condition, the
event channel set by the last trap quits call Is signaled and the
locall and hardware channels are disabled.

When the quit event channel Is signaled, the path goes Into
external quit condition. If the path had been In Internal quit
condition, then the locall Is Is re-enabled. Otherwise, the
hardware event channel Is disabled and drlverSgult ts called to
abort outstanding transactions. ·

When the locall or restart event Is signaled, the hardware event
Is enabled, the restart event Is disabled, and the path Is
restarted and removed from external quit condition.

IbA Hardware Eyeot

When an Interrupt Is received from the device, the hardware event
Is signaled. In response to this signal, the Walt Coordinator
makes the following call:

call dlsp$hardware(p,event_lndtcator;

MULTICS SYSTEM-PROGRAMMER~' MANUAL SECTION BF.2.25

del p ptr; /*p points at the routes entry In the
PDT for the device that
caused the Interrupt*/

The following steps are taken In response to this call:

PAGE 10

1. Ca 11 the Locker
chain. If the lock
enable the reenable
disable the focall,
return.

to lock the DSM's auxiliary transaction block
attempt succeeds, go to step 2. Otherwise,
event channel, signal the hardware event,
restart, hardware, and quit events, and

2. Make the following call to the Transaction Block Maintainer
(see BF.2.20):

call tbm$tbs(p·>route.tbsp,p->route.reenable_event,cstatus);

3. Make the following call the the Driver:

call drlver$hardware(p·>route.loname,p->route.plbp,cstatus);

4. If the return status Indicates that the Driver
unsuccessful attempt to lock the user's TBS, enable the
event channel, signal the hardware event, disable the
restart, hardware, and quit event channels, and return.

5. Go to check_status.

I)

11a -'l.Ull Event

made an
reenable

I oca 11 ,

When the quit event Is signaled, the device Is stopped and placed
In external quit condition. The Watt Coordinator makes the
following call when the quit event for a device Is signaled:

call dlsp$qult(p,event_lndlcator);
del p ptr; I*P points to the element of

of the route array corresponding
to the device that Interrupted•/

The following steps are taken In response to this call:

1. Call the Locker to lock the DSM 1 s auxiliary chain using the
name of the reenable event channel as argument. If the attempt
to lock succeeds, go to step 2. Otherwise, signal the quit
event, enable the reenable event channel, disable the locall,
restart, hardware, and quit events, and return.

2. Call tbmStbs.

3. Make the following call to the Driver:

call drtver$quft(p->route.loname,p->route.plbp,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 11

p->route.int_qult,cstatus);

This call stops the device and aborts all pending transactions.

4. If the returned status Indicates that the Orfver made an
unsuccessful attempt to lock the TBS, signal the quit event,
disable the quit, restart, focall, and hardware events, enable
the reenable event channel, and return.

s. Enable the restart event for the route.

6. If the route Is not In Internal quit condition, disable the
hardware event and go to step a.
7. If p->route.tnt_quft Is ON, re-enable the locall event and
turn that bit OFF.

s. Set the ext_quft bit ON for the route and reset any pending
tocall events.

9. Return to the Waft Coordinator.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 12

Ih& local] Event

The locall event Is used for causing an 1/0 call to be performed.
It Is also used to force the Dispatcher to examine certain bits
In the ICB and PDT and, In response to these bits, to dlyert a
path, to lnyert a path, or to restart a path. When the locall
event Is signaled, the following call Is made by the \>Jatt
Coordinator:

call dlsp$1oca11(p,event_lndlcator);
del p ptr;

The following steps are taken In response to this call:

1. ~all the locker to lo~k the DSM's auxiliary chain. If the
lock attempt succeeds, go to step 2. Otherwise, signal the
locall event, disable the locall, restart, hardware, and quit
events, declare the reenable event to be a call event channel,
and return.

2. Call tbmStbs.

3. If the ext_qult switch Is ON, re-enable the hardware event.

4. If the divert bit In the ICB pointed to by lcbp Is ON, then
do the following:

a. Reset all waiting locall events and disable the locall ~
event channel.

b. Turn off the divert switch In the ICB.

c. If the ext_qult switch In the PDT Is OFF, turn It ON and
make the following call:

call drlver$qult(p->route.loname,p->route.plbp,cstatus);

d. If the returned status from the call Indicates that the
Driver made an unsuccessful attempt to lock the TBS, signal
the. locall event, enable reenable event, disable the
hardware, quit, locall and restart event channels, and
return.

e. Allocate an att_thread block. Store the present loname,
pI bp, I cbp, I oca 11 event channe 1 name, reenab 1 e event
channel name, ext_qult status bit, and attached status bit
In the block. Thread the block on the head of the att_stack
chain.

f. Compute a unique loname and store It In the PDT entry.

g. Set the ext_qult bit OFF In the route.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 13

h. Set the attached bit OFF In the route.

1. Initiate the new per•foname segment, which can be found
with name equal to fcb.new_fs_name In the user's group
directory. Using the header of the new 1S, get pointers to
the new PIB and ICB. Store these pointers In pfbp and lcbp.

J. Create a new focall event channel, declare It to be an
event call channel, and store the event channel name In the
tocall entry of the PDT route. If the assigned user Is not
the present user, give the assigned user access to the new
channel.

k. Create a new reenable event channel and store It In the
reenable_event entry In the PDT.

1. Signal the event channel with name equal to
lcb.dlvert_event for the process with fd fcb.dlvert_proc_ld.

m. Go to check_status.

s. If the Invert bit In the ICB Is ON, then do the following.
For each att_thread block chained to this PIB entry,

a. Make the following call:

call drlver$detach(att_thread.loname,att_thread.plbp~cstatus);

b. Destroy the event, channel wl th name
att_thread.focall_event.

c. Destroy the event channel with name
att_thread.reenable_event.

d. Terminate the segment pointed to by att_thread.plbp.

e. Free the att_thread block.

After all of the att_thread blocks have been freed, do the
following:

a. Set p•>route.att_stack equal to the null pointer.

b. Turn off the tcb.tnvert bit.

c. Signal the event
lcb.fnvert_event for the
fcb.fnvert_pro~ld.

d. Go to check_status.

channel with name· equal
proce~s with ld equal

to
to

6. If the route Is In external quit condition, do the following:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 14

a. Turn the e~t_qult bit OFF.

b. Make the following call:

call drlver$restart(p->route.plbp,lcb.reset,cstatus);

c. Disable the restart event.

d. If the reset bit In the ICB Is ON, turn It OFF and go to
check_status.

1. If the divert and Invert bits are both OFF In the ICB, then
this Is a call to perform an 1/0 call. If the device Is In
either Internal or external quit condition, this call Is an
error. If the attached bit In the POT Is ON, go to step 8.
Otherwise, make the following call:

call drlver$1nlt(p->route.Joname,p->route.plbp,cstatus);

Store the "device
p->route.devtce_absent.
device Is now attached,
enable the hardware and
check_status.

absent" return stat us bIt In
If the return status Indicates that the

set the attached bit In the PDT ON and
quit events for the route. Go to

s. If the device has already been
using the same arguments as In the
the device bas not been detached,
following:

a. Destroy the locall event.

attached, call drlyerSioca1J
above call. If, upon return,
return. Otherwise, do the

b. Terminate the segment pointed to by plbp.

c. Set pdt.current equal to the null pointer.

d. Destroy the present reenable and locall event channels.

e. If the att_stack pointer for the route Is null, set the
attached bit In the PDT entry OFF and destroy the quit and
hardware event channels, set the assigned bit OFF, and go to
check_status.

f. If the att_stack pointer In the PDT entry Is not null,
pop up the pushed_down path by copying the ptbp, lcbp,
loname, locall event channel name, reenable event channel
name, and status bits from the top att_thread block, free
that block, and update the att_stack pointer. Re-enable the
locall event. If the ext_qult switch Is now ON, disable the
hardware event. Go to check_status.

IhA Restart Eyeot

I""

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 15

When the restart event Is called, the Wait Coordinator makes the
following call:

call dlsp$restart(p,event_lndlcator);

In response to this call, the following steps are taken:

1. Call the Locker to lock the DSM's auxiliary transaction block
chain. If the lock attempt Is successful, go to step 2.
Otherwlse,slgnal the restart event, disable the locall, restart,
quit, and hardware event channels, enable the reenable event
channel, and return.

2. Call tbmStbs.

3. Make the following call to restart the path:

call drlver$restart(p•>route.p1bp,lcb.reset,cstatus);

4. Turn off the reset bit In the ICB.

s. Turn the ext_qult bit OFF.

6. Disable the restart event channel.

7. Return.

IhA Reenable ~yegt

When the reenable event Is signaled, the Walt Coordinator makes
the following call:

call dlsp$reenable(p,event_lndlcator);

In response to the call, the Dispatcher takes the following
steps:

1. If the route Is not In Internal quit. condition, enable the
hardware event channel.

2. tf the route Is In neither Internal nor external quit
condition, enable the locall event channel.··

3. If the route Is In external quit condltl·on, enable the
restart event channel.

4. Enable the quit event channel.

5~ Disable the reenable event channel

~ 6. Return to the Watt Coordinator.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 16

Check statys

After each call to the Driver, the following Is done to check for
quit signals and hangups:

1. If the status returned by the Driver Indicates that there has
been a quit and If the trap_qults bltln the ICB Is OFF, make the
follC?wlng call:

call drlver$restart(p·>route.plbp,"O"b,cstatus>;

Go to step 3.

2. If the returned status Indicates that there has
hardware quit and If the trap_qults bit Is ON, then
following:

a. Set the lnt_qult bit In the route ON.

b. Signal the qult)report_event In the ICB for
qult_ld (In the ICB •

c. Disable the locall and hardware events.

3. If the returned status Indicates that the
and If the devlce_absent bit In the route Is
following:

device Is
OFF, then

been a
do the

process

absent
do the

a. If lcb.overseer_trap_hangup Is ON, then signal the
overseer_hangup_report_event for process overseer_ld.

b. If the trap_hangup bit Is ON, signal the
hangup_response_event for process hangup_ld.

c. Go to step 5.

4. If the device Is not absent, then set the devlce_absent bit
In the route OFF.

i. Return to the Walt Coordinator.

Internal Detach procedyre

Whenever It Is necessary for the Dispatcher to detach a route,
the following call Is made:

call detach(p);
del p ptr; /•pointer to the appropriate

route In the POT•/

The following steps are taken In response to this call:

>. MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25

1. Call the Driver to detach the present path:

call drlver$detach(p->route.loname,
p->route.plbp,cstatus);

PAGE 17

2. Call the Segment Management Module to terminate the segment
pointed to by p->route.plbp.

3. Destroy the reenable, locall, hardware, restart, and quit
event channels.

4. For each att_thread block for this route, do the following:

a. Terminate the segment pointed to by att_thread.plbp

b. Destroy the reenable and locall event channels.

c. Free the att_thread block.

5. Set the assigned bit In the route OFF.

6. Set the att_stack pointer for the route equal to null.

7. Return.

r· Soec I a 1 ~ .fg,[~ Usage

The following call Is provided In order to permit a DCM to
discover the name of the hardware event channel for Its device:

call dlsp$get_hardware(hardware_event,alone);
del hardware_event blt(70),

alone bft(1); /•equal to one If the present path
" Is the only one•/

This call sets hardware eyent equal
pdt.current->route.hardware_event, sets alone ON If and only
the present path Is the only one for this device <I.e.,
att_stack pointer Is null), and returns.

to
If

the

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25

Syromarv gf plspatche:r Calls And Argyments

call dlsp$1nlt(pdtptr);
call dlsp$reasslgo(aoyptr,event_lndlcator);
call dlsp$hardware(p,event_lndlcator);
call dlsp$qult(p,event_lndlcator);
call dlsp$1ocall(p,event_tndlcator);
call dlsp$restart(p,event_lndlcator);
call dlsp$reenable(p,event_lndlcator);
call dlsp$get_hardware(hardware_event,alone);

del pdtptr ptr,
aoyptr ptr, /•Ignored•/

PAGE 18

p ptr, /•point to a route entry•/
event_lndlcator(3) blt(70),/•standard event Indicator•/
hardware_event blt(70), /•name of hardware event•/
alone blt(l); /•equal to one If the present

path Is the only one•/

