MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2,25 PAGE 1

Published: 01/10/68
(Supersedes: BF,2,25, 08/14/675

ldentification

The Dispatcher
R. C., Daley and S. |, Feldman

Burpose

The Dispatcher is the module in each Device Manager Process that
is the Interface between the Wait Coordinator and the Driver.
The Dispatcher Is called when certaln events are signaled by

Device Strategy Modules In other processes. The Dispatcher
handles six types of event channel: reasslign, reenable, 1iocall,
quit, restart, and hardware, The baslic data base for the

Dispatcher Is the Process Dispatching Table, which contains
information on each of the devices that may be controlled by that
process.

lntroduction

In order to permit quick response to hardware Interrupts, /0
devices are controlled by special processes called Device Manager
Processes (DMPs)., There are two classes of DMP, the universal
DMP and the private DMP. A universal DMP can handle many devices
for many different users; a private DMP can handle a single
device for a single user., A private DMP Is a member of the user
group for which the device Is to be run. The Dispatcher 1Is the
module In each DMP that handles event signals for any number of
devices for any number of users. The basic data base of the
Dispatcher Is the Process Dispatching Table (PDT). This table is

created before the DMP is Initiallzed and contains an entry for
each of the devices that the DMP may control,

It Is assumed that the reader 1Iis familiar with the Walt
Coordinator and the concept of an "event channel" (see Sectlion
BQ.6). The Dispatcher Is responsible for creating certaln event
channels and for handling signals on those channels. The
Dispatcher operates in conjunction with the Attachment Module
(Section BF.2,23), with the Request Queuer, and with the Driver
(Section BF.2.24),

In the following descriptions, an event call channel s
“"disabled" by declaring it to be an event walt channel and s
“enabled" by declaring it to be an event call channel assoclated

with the proper procedure.

The following Is a summary of the event channels that are of
interest to the Dispatcher:

MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2,25 PAGE 2

There Is one “reassign" event channel (relative priority 6) per
DMP. It Is signaled whenever the status of this process as the
control user of a device Is changed.

There is one “"quit" event channel (relative priority 2) per
device assigned to a DMP. When that event channel Is signaled,
the Dispatcher calls the gquit entry of the Driver to make the
device to stop.

There is one '"restart" event channel (relative priority 3) per
device assigned to a DMP. When that event channel 1Is signaled,
the Dispatcher calls the restart entry of the Driver to restart
the path. This channel is enabled only when the route 1Is In
external quit condition.

There is one '"hardware" event channel (relative priority u4) per
~device assligned to a DMP. This channel is signaled whenever a
hardware interrupt Is recelved for the device. In response, the

Dispatcher calls the hardware entry of the Driver.

There Is one '"locall" event channel (relative priority 5) per
jopath per channel assigned to a DMP, This channel Is wused to
inform the Driver that there is a new 1/0 call 1iIn the Request
Queue, to force the Dispatcher to create a new f[opath,to cause
pushed-down paths to be deleted, and to restart a path that has
been quit.

There Is one "“reenable" event channel (priority 1) per iopath per
channel. Normally, thils event channel Iis disabled. When certaln
data bases are found to be locked, the Dispatcher disables the
other three per-device channels and temporarily enables this
channel. When It is signaled, the event channel Is disabled and
the other event channels are re-enabled.

The Driver gets the 1list of Transaction Block Extenslons
containing outer call requests by calling the get chaln entry of
the Transaction Block Maintainer (see BF.2,20), However, those
transaction blocks are 1located in the user's TBS, and not
necessarily in the DMP's TBS, Therefore, before each call to the
Driver, a call Is made to tbm$tbs to temporarily switch TBS
segments and to change the locking strategy. Also, the auxiliary
transaction block chain is locked using the first 1lock 1list 1in

the ICB.

Throughout this paper, 'cstatus'" Is a bit string of length 18
which contains status Information on a particular call.

Ihe Process Dispatching Table

The Process Dispatching Table has an entry for each device that
may be controlled by a given DMP, The PDT 1Is created and
initialized with the names of the devices to be controlled before
the DMP itself Is initialized. The following is a declaratlion of

*

'MULTICS SYSTEMS-PROGRAMMER'S MANUAL

the

decl

NN

PDT:

1l pdt based(p),
lnIt_paoc char(32),

"

dmp_prgc_ld bit(36),

reasslﬁn_event bit(70),

creator_ld bit(36),
]

lnlt_dgne_event bit(70),

current ptr,
"

pdt_nawe char(32),

dtabp ptr,
"
dlsp_p&r,

reassign ptr,

focall ptr,

reenable ptr,
restart ptr,

quit ptr,

hardware ptr,
nroutes fixed bin(17),
routessn),

W W WwWwWw W

type char(32),
resource_name char(32),
user_Iid char(50),
foname char(1l5),

pibp ptr,

icbp ptr,

tbsp“ptr,

W W WWWWW

att_ftack ptr,
]

W

3 locall_event bit(70),
(1]
3 restﬁrt_event bit(70),

SECTION BF.2.25 PAGE 3

/*Process Dispatching Table*/

/*name of procedure to be
called for initialization.

Equal to "disp$init"s=/

/*id of this Device Manager
Process*/

/*event channel to be signaled
when device Is assligned or
unassigned to this process*/

/*id of process that created thlis
Device Managerw*/

/*event channel to be signaled when
inftialization of this process is
complete,*/

/*pointer to element of routes
for device for which work
is being done at present»/

- /*name used by other processes to

find PDT»/

/*pointer to Driver's driving
tablex/

/*pointers to entry points of
the Dispatcher*/

/*number of entries In routes array*/

/*an entry for each device which
may be assligned to thls process.
n = pdt.nroutes*/

/*type of resource*/

/*resource_name for this device*/

/*user to whom device is assligned+*/

/*DCM loname, a unique character string*/

/*pointer to PIB for this DSM*/

/*pointer to ICB for DSM#»/

/*polinter to Transaction Block
segment in user's group
directorys*/

/*pointer to entry In attach_stack
area for pushed=down DCM#*/

/*event to be signaled by DSM
for localling, resetting,
inverting, and diverting»/

/*signaled to restart a path
In external quit condition=*/

MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2,25 PAGE 4

3 hardware _event bit(70), /*event channel signaled when
interrupt recelved from devicer*/
3 quit_event biu(70), /*event to be signaled to stop
" device and prepare for a diverts/

3 reenable_event bit(70), /*signaled when auxiliary
" chain or TBS is unlocked*/
3 device_absent bit(l), . /*1 If device not present*/
3 assligned bit(1l), /*1 if device assigned to this
" process*/
3 attached bit(1l), /*1 If attach call has been
" Issuedw/
3 ext_quit bit(l), /*1 if device in external qult
" condition*/
3 Int qult bit(l), /*1 If device In Internal (hardware)

quit condition*/

2 attach stack area((10000));/~area into which blocks are
allocated for diverted paths*/

/*
*/
dcl 1 att_thread based(p), /*declaration of block to be
" allocated into att_stack
" area for pushing down of
" DCMs*/
2 loname char(15), /*DCM loname*/
2 locall_event bit(70), /*event channel name*/
2 reenable_event bit(70), /*event channel name*/
2 pibp ptr,
2 jicbp ptr,
2 status,
3 attached bit(1l),
3 ext_quit bit(1l),
2 next ptr; /*points to next block in thread
[1]

of pushed-down DCMs=/

The creating process allocates the PDT, stores its process id In
pdt.creator_id, stores the name of an event channel in
pdt.Inlt_done_event, stores the value of N in pdt.nroutes, and
stores the name of one of the devices assoclated with each route
In resource_name, The character string "dmp$init" is stored in

pdt.init_proc.

When the Wait Coordinator makes a call to the Dispatcher in
response to an event signal, It calls with a pointer argument,
This pointer points at an element of the routes array. The
Dispatcher uses an auxiliary structure '"route' with a declaration
equal to the declaration of an element of '"routes" In conjunction
with this pointer to access one of the relevant entrles 1in the

PDT.

MULTICS SYSTEMS=-PROGRAMMER'S MANUAL SECTION BF.2,25 PAGE 5

Device Manager lInitialization

After the PDT is created, the creating process makes a call to
greate proc with the path name of the PDT as argument, This
causes a process to be created, It causes the PDT to appear In
the new process's process directory, and it causes a call to the
procedure whose name equals the first 32 characters of the new
segment, Therefore, the first 32 characters of the PDT contain
the string "disp$init", The following call is made:

call disp$init(pdtptr);
dcl pdtptr ptr;

The pdtptr (a pointer to the PDT) is stored 1in Internal static
storage, and then the following call is made:

call dmps$init(pdtptr);
The following steps are taken In response to that call:
1. The process iId of the DMP is stored in pdt.dmp_proc_id.
2. The attach_stack area of the PDT is initiallized.
3. The assigned bit for each route Is set OFF,
4L, When an event channel is declared to be an event call channel
(see BQ.6.02), a pointer to the procedure to be called when the
channel Is signaled must be provided. Call ' generate_ptr (see
BY.13.02) to get pointers to the six entry points of the
Dispatcher called by the Wait Coordinator. Coordinator and store
them in the corresponding entries of pdt.disp_ptrs.
5. The reassign event channel Is created and declared to be an
event call channel, Whenever that channel Is signaled, the Wait
Coordinator will make the following call:

call disp$reassign(null,event_indicator);
The event Indicator Is an array of three 70-bit strings
contalning the event channel name, the event 1d, and the sending
process id. The event_indicator is passed as the second argument
of all calls to the Dispatcher, but will be lgnored.
6. Signal the Init_done_event for process creator_ld.

7. Initlalize the Transaction Block Maintainer by making the
following call:

call tbm$init("1"b,cstatus);

8. Return.

MULTICS SYSTEMS-PROGRAMMER'S MANUAL SECTION BF.2,25 PAGE 6

Ihe Inter-process Communication Block
The Interprocess Communication Block (ICB) Is a part of the DSM's ~
per-ioname segment (I1S) and contalns information used by the
Attachment Module, Request Queuer, and Dlispatcher. For
completeness, a declaration of the ICB is Included here. For a
discussion of how this data base Is allocated and Iinitialized,
see BF.2.23.
The following Is a declaration of the ICB.
dcl 1 icb based (p), /*Inter-process communication block»/
2 queue_lock_list bit(l44), /*standard lock for request queuing*/
2 iocall_event bit(70), /*event channel namex*/
2 dmp_proc_Iid bit (36), /*device manager process ld*/
2 dmp_user_Iid char(50), /*user 1d of dmp if not privatew/
2 private_dmp bit(1l), /*1 If a private DMP was createdx*/
2 quit_event bit(70), /*event name*/
2 restart_event bit(70), /*name of event channel to be signaled
" to restart path In DMP without
" passing an outer callw/
2 reset bit(l), /*set to 1 to cause a reset
" of all calls in request queue
" when next restart is done*/
2 invert bit(1), /*set to 1 to cause diverted paths ~‘J
woo. In DMP to be detached*/
2 invert_event bit(70), /*name of event channel to be
" signaled when inversion complete*/
2 divert bit(l), /*set to 1 to cause present lopath
" to be quitw*/
2 divert_event bit(70), /*name of event channel to be
" signaled when diversion complete*/
2 trap_quits bit (1), /*1f 1l,signal if qult occurs
" on device*/
2 overseer_trap_hangup bit(l), /+*if 1, signal overseer If
" ‘ hangup occurs on devicew/
2 trap_hangup bit(1l), /*1f 1, signal iIf hangup occurs on
" device*/
2 quit_id bit (36), /*ld of process to be signaled on quits»/
2 overseer_ld bit(36), /*process id of overseer*/
2 hangup_1id bit(36), /*id for process to be signaled
" when device hangs up*/
2 quit_report_event bit(70), /*event signaled If device quitx/
2 overseer_hangup_report_event bit(70), /*event to be
" signaled if hangup occurss/
2 hangup_report_event bit(70), /*event to be signaled If
w device hangs up*/
2 diverted bit(l), /*1 if this loname has been
" diverted*/
2 dlvertwtype bit(l), /*when diverting, set to 1 If

the two ioname arguments are ~

e

MULTICS SYSTEMS=-PROGRAMMER'S

2

NN

~N NN

NN

"
alloc_gown btt(l),

dsm_rf_type char(32),
dsm_rf_name char(32),
dcm_tyge char(32),

dcm_deﬁcrlptlon char(32),
nchar_ﬂcm_mode fixed bin(
dcm_moge_relp bit(18),

old_dsm_Iioname char (32),
new_iswname char(32),

”
dcm_loaame char(32),

old_decm_ioname char(32),
fcb_lock_list bit(1luk),
invert_proc_id bit(36),
divert_proc_id bit(36);

MANUAL SECTION BF,.2.25 PAGE 7

equalw/ :

/*how this reglstry file was reached.
If ON, device of zlven type was
allocated and name returned.
Otherwise, name came from description
argument of call,.»/

/*type of first RF (highest level)#*/

/*name of flrst RFw/

/*type to be used In attach
calls to the DCM#/

/*description to be used in attach
calls to the DCMw/

17), /*number of characters
in dem_mode*/

/*relp to character string
equal to mode of DCMw%/

/*previous dsm loname*/

/*for use when diverting.

Name of new
per-ifoname segmentw/

/*for possible future use In
handiing NODMP mode*/

/*same as abovex*/

/*standard lock*/

/*response event for Invert=»/

/*response event for divert®/

MULTICS SYSTEM~-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 8

Device Reassignment

Whenever the Attachrnent Module assigns a device to a user group,
It signals the reassign event for the appropriate DMP. This
causes, as described above, a call to dlsp$reasslisn. In response
to this call, the following Is done for each element of the
routes array In the PDT:

l. Make the followlng call to the Device Assignment Module (see
Section BF.2.26):

call loam$get_assignment(type,resource_name,user_Iid,cstatus);
dcl resource_name char(32), /*from the PDT*/

user_Ild char(50), /*return argument: user to whom
device is assigned*/
cstatus bit(3); /*status for this callx/

If cstatus Is zero, then this DMP is the control user for thls
device., If bit 1 Is ON, then there is an error in the PDT: the
device does not exist. Otherwise, this DMP Is not the present
control user for this device.

2, |If this DMP Is not the control user for this device, then

a. |If the assigned bit in the route Is OFF, then go on to
the next route In the PDT,

b, If the asslgnéd bit Is ON, then call the internal detach
procedure and then go on to the next route in the PDT.

3. |If this DMP Is the control user for thils device, then

a. |f the assigned bit in the PDT entry is OFF, go to step
L.

b. If the assigned bit in the PDT entry Is ON and 1If the
user_id In the PDT entry is equal to the assligned user of
the device, go on to the next route In the PDT.

c. |If the assigned bit In the PDT entry is ON but the user
ids do not match, call the Internal detach procedure and
then go on to the next step.

4L, Store the user_ld returned by the I0AM In the wuser_id entry
in the PDT.

5. Create a unique name (by a call to unique_chars) and store
that name In the loname entry for the route.

6. Initiate the per-ioname segment (1S), which can be found by a
1ink with name equal to the resource_name In the user's group
directory. (Use the name created In step 5 above as the call
name.) Using this pointer and relative pointers 1In the DSM
loname segment header, get pointers to the PIB and to the |ICB.

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BF.2,25 PAGE 9

Store these pointers iIn pibp and lcbp, respectively,

7. Set the assligned bit ON, set the attached, ext_quit, and
Int_quit bits OFF.

8. Create the reenable, 1locall, quit, restart, and hardware
event channels and declare them to be event call channels. I f
the assigned user of the device Is not the same as the present
user, give the assigned user access to these event channels,
When these channels are signaled, the Walt Coordinator will call
the corresponding entries of the Dispatcher with a pointer to the
appropriate element of the routes array as an argument. Store
the event channel names in the corresponding entries In the PDT.
Disable the hardware, quit, restart, and reenable event channels.

9, Find the Transaction Block Segment (TBS) In the user's
directory and store a pointer to It In the tbsp entry in the PDT.

10. Go on to the next entry In the PDT.

When all entries in the PDT have been checked, return to the Wait
Coordinator.,

Qulit Conditions
A route is in one of three '"quit conditions": no quit, Internal
quit, and external quit., The normal condition is no quit, I f

the trap_quits bit Is OFF In the ICB when a hardware quit Is
detected, the path Is restarted and the route remains In no quit
condition. |If the trap_quits bit is ON when a hardware quit is
detected, the path is placed in Internal quit condition, the
event channel set by the last trap gulits call is signaled and the
locall and hardware channels are disabled.

When the quit event channel [s signaled, the path goes Into
external quit condition. |If the path had been In iInternal qulit
condition, then the locall Is 1Is re-enabled. Otherwlise, the
hardware event channel is disabled and driver$aqult iIs called to
abort outstanding transactions. '

When the locall or restart event is signaled, the hardware event

Is enabled, the restart event |Is disabled, and the path s
restarted and removed from external quit condition.

JIhe Hardware Event

When an interrupt Is received from the device, the hardware event
Is signaled. In response to this signal, the Walt Coordinator
makes the following call:

call disp$hardware(p,event_Iindicator;

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 10

dcl p ptr; /+*p points at the routes entry in the
PDT for the device that
caused the interrupt*/

The following steps are taken In response to this call:

1, Call the Locker to lock the DSM's auxiliary transactlon block
chain. |If the lock attempt succeeds, go to step 2. Otherwise,
enable the reenable event channel, signal the hardware event,
disable the focall, restart, hardware, and quit events, and
return.

2. Make the following call to the Transaction Block Maintalner
(see BF.2.20):

call tbm$tbs(p->route.tbsp,p->route.reenable_event,cstatus);
3. Make the following call the the Driver:

call driver$hardware(p->route.loname,p=>route.pibp,cstatus);
L, If the return status indlcates that the Driver made an
unsuccessful attempt to lock the user's TBS, enable the reenable
event channel, signal the hardware event, disable the iocall,
restart, hardware, and quit event channels, and return.

5. Go to check_status.

|
Ihe Quit Event

When the qulit event is signaled, the device Is stopped and placed
in external quit condition. The Wait Coordinator makes the

following call when the quit event for a device Is signaled:

call disp$quit(p,event_indicator);
dcl p ptr; /*p points to the element of

of the route array corresponding
to the device that interrupteds/

The following steps are taken In response to this call:k

1. Call the Locker to lock the DSM's auxiliary chain using the
name of the reenable event channel as argument, I|f the attempt
to lock succeeds, go to step 2. Otherwise, signal the quit
event, enable the reenable event channel, disable the locall,
restart, hardware, and quilt events, and return. .

2. Call tbms$tbs.
3. Make the following call to the Driver:

call driver$quit(p->route.loname,p=>route.pibp,

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BF,2,25 PAGE 11

p->route,.int_quit,cstatus);
This call stops the device and aborts all pending transactions.

4, If the returned status Indicates that the 0Nriver made an
unsuccessful attempt to lock the TBS, signal the qult event,
disable the quit, restart, locall, and hardware events, enable
the reenable event channel, and return.

5. Enable the restart event for the route.,

6. |If the route is not In internal quit condition, disable the
hardware event and go to step 8.

7. If p=>route.int_quit is ON, re-enable the 1locall event and
turn that bit OFF.

8. Set the ext_quit bit ON for the route and reset any pending
focall events.

9, Return to the Walt Coordinator.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 12

Ihe locall Event

The locall event is used for causing an 1/0 call to be performed.
It is also used to force the Dispatcher to examine <certaln blts
in the ICB and PDT and, In response to these bits, to divert a
path, to jnvert a path, or to restart a path. When the 1locall
event Is signaled, the following call |Is made by the Wait
Coordinator:

call disps$iocall(p,event_indicator);
dcl p ptr;

The following steps are taken In response to this call:

1. Call the Locker to lock the DSM's auxiliary chain. If the
lock attempt succeeds, go to step 2. Otherwise, signal the
locall event, disable the locall, restart, hardware, and quit
events, declare the reenable event to be a call event channel,
and return.

2, Call tbm$tbs.

3. |If the ext_quit switch is ON, re-enable the hardware event.

4k, I|f the divert bit In the ICB pointed to by icbp Is ON, then
do the following:

a. Reset all walting locall events and disable the 1locall
event channel,

be Turn off the divert switch In the ICB.

c. If the ext_quit switch In the PDT Is OFF, turn it ON and
make the following call:

call drivers$quit(p=->route.loname,p=->route.pibp,cstatus);

d. |If the returned status from the call indicates that the
Driver made an unsuccessful attempt to lock the TBS, slignal
the locall event, enable reenable event, dlisable the

hardware, quit, 1locall and restart event channels, and
return.

e. Allocate an att_thread block. Store the present loname,
pibp, 1Icbp, 1iocall event channel name, reenable event
channel name, ext_qulit status blit, and attached status bit
l: fhe block. Thread the block on the head of the att_stack
chaln.

f. Compute a unique loname and store It In the PDT entry.

g. Set the ext_quit bit OFF In the route.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF,2.25 PAGE 13

h. Set the attached bit OFF In the route.

il Initiate the new per-ioname segment, which can be found
with name equal to Icb.new_is_name 1In the wuser's group
directory. Using the header of the new IS, get pointers to
the new PIB and ICB., Store these pointers in pibp and Icbp.
J+ Create a new locall event channel, declare it to be an
event call channel, and store the event channel name In the
locall entry of the PDT route. I|f the assigned user Is not

the present user, give the assigned user access to the new
channel,

ke Create a new reenable event channel and store It In the
reenable_event entry In the PDT.

1. Signal the event channel with name equal to
icb.divert_event for the process with id icb.divert_proc_id.

m. Go to check_status.

5. |If the Invert bit In the ICB Is ON, then do the following.
For each att_thread block chained to this PIB entry,

a. Make the following call:
call driver$detach(att_thread.loname,att_thread.plbp,cstatus);

b. Destroy the event. channel with name
att_thread.locall_event.

C. Destroy the event channel with name
att_thread.reenable_event,

d. Terminate the segment pointed to by att_thread.plbp.
e. Free the att_thread block.

After all of the att_thfead blocks have been freed, do the
following:

a. Set p->route.att_stack equal to the null polinter.

b Turn off the lcb.linvert bit,

C. Signal the event channel with name. equal to
icb.invert_event for the process with 1{id equal to
icb.invert_proc_Iid.

d. Go to check_status.

6. If the route Is In external qult condition, do the following:

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BF,.2,25 PAGE 14

a. Turn the ext_quit bit OFF,
b. Make the following call:

call driver$restart(p->route.pibp,icb.reset,cstatus);
c. Disable the restart event,

de If the reset bit In the ICB Is ON, turn It OFF and go to
check_status.

7. |If the divert and Invert bits are both OFF In the 1ICB, then
this is a call to perform an 1/0 call. If the device 1Is in
either internal or external quit condition, this call 1[s an
error., |If the attached bit In the PDT 1Is ON, go to step 8.
Otherwise, make the following call:

call driver$init(p=>route,lioname,p=->route.pibp,cstatus);

Store the "device absent" return status bit In
p->route.device_absent, |If the return status indicates that the
device Is now gttached, set the attached bit in the PDT ON and
enable the hardware and quit events for the route, Go to
check_status,

8. |If the device has already been gttached, call driver$iocall

using the same arguments as In the above call., |If, upon return,
the device has not been detached, return. Otherwise, do the
following:

a. Destroy the locall event.

b. Terminate the segment pointed to by pibp.
c. Set pdt.current equal to the null pointer.

d. Destroy the present reenable and locall event channels.

e. If the att_stack pointer for the route is null, set the
attached bit In the PDT entry OFF and destroy the quit and

hardware event channels, set the assigned bit OFF, and go to
check_status.

f. |If the att_stack pointer in the PDT entry is not null,
pop up the pushed_down path by copying the pibp, Ilcbp,
foname, locall event channel name, reenable event channel
name, and status bits from the top att_thread block, free
that block, and update the att_stack pointer. Re-enable the
locall event, |If the ext_quit switch Is now ON, disable the
hardware event. Go to check_status,

Ihe Restart Event

\ 4

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 15

When the restart event Is called, the Wait Coordinator makes the
following call:

call disp$restart(p,event_indicator);
In response to this call, the following steps are taken:

1. Call the Locker to lock the DSM's auxiliary transaction block
chain, |If the 1lock attempt |Is successful, go to step 2.
Otherwise,signal the restart event, disable the locall, restart,
qulit, and hardware event channels, enable the reenable event
channel, and return.

2. Call tbm$tbs.
3. Make the following call to restart the path:
call driver$restart(p=->route.pibp, icb.reset,cstatus);
b, Turn off the reset bit In the ICB.
5. Turn the ext_quit bit OFF.,

6. Dlsable the restart event channel,

7. Return,

Ihe Reenable Event

When the reenable event Is signaled, the Wait Coordinator makes
the following call: '

call disp$reenable(p,event_indicator);

In response to the call, the Dispatcher takes the following
steps: ' :

1. |f the route is not In iInternal quit condition, enable the
hardware event channel, ‘

2, If the route 1Is 1iIn neither Internal nor external quit
condition, enable the locall event channel,

3, |If the route 1Is 1In external quit condition, enable the
restart event channel, '

4k, Enable the quit event channel,
5. Disable the reenable event channel

6. Return to the Wait Coordinator.

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BF.2,.25 PAGE 16

Check status

After each call to the Driver, the following Is done to check for
quit signals and hangups:

1. |If the status returned by the Driver Indicates that there has
been a quit and If the trap_ qults bitin the ICB is OFF, make the
following call:

call driver$restart(p->route.pibp,"0"b,cstatus);
Go to step 3.

2. |f the returned status 1Indicates that there has been a
hardware quit and iIf the trap_quits bit 1is ON, then do the
following:

a. Set the Int_quit bit In the route ON,

b. Signal the quit_report_event 1In the ICB for process
quit_id (in the ICB).,

c. Disable the locall and hardware events.
3. |f the returned status Indicates that the device 1Is absent

and If the device_absent bit in the route Is OFF, then do the
following:

a. If Icb.overseer_trap_hangup 1Is ON, then signal the
overseer_hangup_report_event for process overseer_ld.

b. I f the trap_hangup bit Is ON, signal the
hangup_response_event for process hangup_id.

c. Go to step 5.

b, If the device Is not absent, then set the device_absent bIt
in the route OFF,

5. Return to the Walt Coordinator.

lnternal Detach Procedure

Whenever it iIs necessary for the Dispatcher to detach a route,
the following call iIs made:

call detach(p):;
dcl p ptr; /*pointer to the appropriate
route Iin the PDTw/

The following steps are taken In response to this call:

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 17

1, Call the Driver to detach the present path:

call driver$detach(p->route.lioname,
p->route.pibp,cstatus);

2. Call the Segment Management Module to terminate the segment
pointed to by p=>route.plibp.

3. Destroy the reenable, focall, hardware, restart, and quit
event channels.

4L, For each att_thread block for this route, do the following:
a. Terminate the segment pointed to by att_thread.pibp
b. Destroy the reenable and locall event channels,
c. Free the att_thread block.

5. Set the assigned bit in the route OFF,

6. Set the att_stack pointer for the route equal to null,

7. Return,

sSpeclal Call for DCM Usage

The following call is provided In order to permit a DCM to
discover the name of the hardware event channel for its device:

call disp$get_hardware(hardware_event,alone);
dcl hardware_event bit(70),
alone bit(l); /*equal to one if the present path
" Is the only one*/

This call sets hardware event equal to
pdt.current->route.hardware_event, sets glgne ON If and only If
the present path Is the only one for this device (i.e., the
att_stack pointer Is null), and returns,

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BF.2.25 PAGE 18

Summary of Dispatcher Calls and Arguments

call disps$init(pdtptr);

call disp$reassign(anyptr,event_indicator);
call disps$hardware(p,event_indicator);

call disp$quit(p,event_indicator);

call disp$locall(p,event_indicator);

call disp$restart(p,event_indicator);

call disp$reenable(p,event_indicator);

call disp$get_hardware(hardware_event,alone);

dcl pdtptr ptr,
anyptr ptr, /*lgnored+/
p ptr, /*point to a route entry+/
event_Indicator(3) bit(70),/*standard event Indicator+/
hardware_event bit(70), /*name of hardware event*/
alone bit(l); /*equal to one if the present
path Is the only one*/

