
To: MSPM Distribution
~""""" From: J. F. Ossanna

Subj: BF.2.27
Date: 1/10/68

In addition to minor corrections, the attached revision of
BF.2.27 contains the following changes.

1. If an erroneous~ Is found, the mode handler now returns
without altering bmode.

2. A new call, modeSbackuo Is described.

3. A revised declararlon for the mode control structure Is given.

4. The assignment of modes to positions In the mode bit string,
·bmode,has been altered.

s. The status bits returned by the mode handler are specified.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Section BF.2.27

Published:
(Super•edes: BF.2.27,

!/0 System Mode Handling Discipline for Outer Modules.
J. F. Ossanna and ·K. l. Thompson.

purpose

Page 1

1/10/68
8/14/67)

This section describes the standard mode handling discipline for
1/0 System outer modules. The modes whose handling is described
are those which reach an outer module as a character string mode
argument In attach, detach, changemode, dlyert, revert, readsync,
wrltesync, and worksync calls. See Sections BF.l.01-4 for actual
definitions of the various modes.

A table-driven mode handler is described which accepts a
character string mode argument and produces an updated version of
a mode bit string. The driving table, known as the mode control
structure, Is tailored to the requirements of the particular
outer module, and at the same time enforces a standard mode
handling behavior.

General

Whenever an outer module receives an outer call with a mode
character string, the outer module calls the mode handler to
interpret the incoming modes In the proper context. The mode
handler returns an updated mode bit string, which can
subsequently be Interrogated by the outer module to determine the
state of any particular mode. Two mode bit strings are defined.
The first, "bmode", Is pertinent during the lifetime of an
attachment, is stored in the outer module's Per-loname Base
(P!B), and contains the states of all the defined standard l/0
System (lOS) modes (except detachment and disposal modes) and any
special modes peculiar to the module. The second, "bdisp", is
pertinent only during detachment, Is not saved, and contains the
states of the standard detachment and disposal modes. The same
drlvt"ng table Is used by the mode handler for both sets of modes.

The mode handler also returns to the outer module a "pass-on"
mode 'character strIng suI tab 1 e for use as the mode argument In
the call being pa~sed-on to the next outer module In the iopath.
Whether or not an Incoming mode Is Included Jn the pass-on string
by the handler Is controlled by the driving table.

The mode arguments of 'ttac~, det@c~, didert, ~eyert, and
{;hangemode ca 11 s are fed d rect y to t e roo e han 1 er. The
synchronization modes specified by readsync, wrltesync, and
worksync calls are not; Instead the handler Is passed a mode
formed by concatenation of a call-dependent character C"R", "W",
and "K" respectively) with the synchronization mode. For
example, the read synchronization mode is passed in the form
C"R"> concat Crsmode), where rsmode is obtained from the incoming

Page 2 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.27

readsync call.

The mode control structure contains all the information necessary
for determining default modes, for ascertaining the applicability
of any modes to the particular outer module or to the current
mode context, and for enforcing the interdependence between
related modes. The interaction between the asynchrony prevention
modes and the synchronization modes is automatically handled.

A mode character string consists of mode mnemonics separated by a
delimiter. See Section BF.l.02 for a more complete discussion.

~Handler Calls

When an outer module has a mode character string to feed to the
mode handler, it issues one of the following calls.

call mode$bset(mcsp,mode,bmode,passmode,cstatus);

call mode$dset(mcsp,mode,bdisp,passmode,cstatus);

de 1 mcs p pt r,
mode char <•>,
bmode bit (72),
bdisp bit (72),
passmode char <•>,
cstatus bit (18);

/•pointer to mode control structure•/
/•incoming mode char string•/
/•mode bit string•/
/•detach/disposal bit string•/
/•pass-on modes•/
/•call status, see Table 3•/

The modeSbset call is used to process a~ that came from an
attach, changemode, readsync, writesync, worksyoc or diyert call;
the modeSdset call is used to process a~ (disposal) from a
detach or reyert call. ~Is a pointer to the base of the
driving table containing the mode control structure (MCS). This
driving table is one of those managed by the switching complex
(see Section BF.2.20); a pointer is automatically provided in the
PIB upon each outer call. ~ is obtained as
(plbp->pib.dtabpl). !D.2.S'!c. is the Incoming mode character string
being fed to the handler; in the case of the synchronization
modes, It is formed by concatenation as explained earlier. 2rnode
Is kept In the PIB and Is always referenced as (pibp-)pib.bmode).
bdisp is kept in automatic storage, since it is used only at
detachment or reversion time. The Internal structure of bmode
and bdisp Is detailed later below. passmode is a mode character
string containing those Incoming modes which, according to the
MCS, are to be passed on to the next module.

The first call to the mode handler with a particular MCS must be
a modeSbset call. This first call results in the setting of all
relevant modes; those not mentioned In ~ are set to their
de fa u 1 t v a 1 u e s • S i m i 1 a r 1 y, the event u a 1 c a 1 1 to mode$ d s e t
returns a bdisp with all modes set.

Subsequent calls to mode$bset can result in mode
changed provided the modes concerned are

states being
intrinsically

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.27 Page 3

changeable. At each such subsequent call a fresh bmode Is
produced. If an error Is detected by the mode handler while
handling a particular~, the call Is abandoned, the error is
reported In cstatys, and bmode remains unaltered.

Two treatments are provided for mode mnemonics In ~ which
cannot be found In the MCS. If the not_found flag In the MCS Is
OFF, the presence of such modes is considered an error. If the
not_found flag Is ON, such modes are merely added to the right
end of the oassmode string. The value of the not_found flag is
compiled into the MCS at the time of Its creation.

The handler scans ~from left to right. The presence of
incompatible modes is not detected; the most recent (in terms of
the scan) of any conflicting modes determines the final mode
states. This behavior can be utilized when concatenating mode
strings to control which component can override the other.

For modes which are changeable only at
the access mode is unchangeable once
begun the following. call Is
changeability switch In the MCS.

certain times
actual Input/output

provided to alter

call mode$change_sw(mcsp,mode,change,cstatus);

/•mode to be affected•/

e.g.
has
the

del mode char (8),
change bit (1); /•value to be set into change_sw•/

The changeability switch in the MCS Is described later below.

eropagation gL Modes

The propagation of calls (to the next module in an lopath)
containing mode arguments is covered In detail In Section
BF.l.Ol-4. The discussion herein Is intended only as a
supplement. When an attach or detach call Is to be passed on,
the~ (or disoosal) argument Is formed by concatenating the
passmode string returned by the handler with any modes the module
it~elf wishes to send on. The concatenation order will determine
which component can override the other (see earlier discussion).
A ,hans:emode call is usually passed on only If oassmode is not
null, or If the module Itself determines that some other mode Is
to be sent on. If both conditions exist, the two components are
appr~priately concatenated.

Inasmuch as the read and write synchronization modes are of
Interest only to Device Strategy Modules (OSMs), other modules
pass on readsvnc and wrttesvnc calls without calling the mode
handler. All modules call the handler after receiving a worksync
call, and the call Is always passed on. divert and revert calls
are normally seen only by DSMs; In those exceptional cases where
other modules receive these calls, these calls are passed

,,.,.- dl rectly on wl thout calling the handler.

Page 4 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.27

It Is possible that a passed-on mode may be found unacceptable to
the next outer module. If such an error occurs, the original
mode must ordinarily be regarded as In error, The following call ~
Is provided to undo the effect of the corresponding call to the
mode handler.

call mode$backup(mcsp,cstatus);

·~~~Strings

The mode bit strings, bmode and bdlsp, are each 72 bits long and
contain the states of 36 modes. Each mode Is represented by a
pair of bits; the first bit indicates whether or not the mode is
applicable (applicable • "O"b) and the second indicates its value
if applicable. The location (Index) of the pair of bits
representing a particular mode is standardized. This Index is
contained in the MCS entry for each mode so that special (outer
module dependent) modes may be handled.

The assigned locations for various modes in bmode and bdisp are
given In Tables 1 and 2 respectively. These tables also give the
standard mnemonics corresponding to both values of each mode; the
columns labeled "mO" and "ml" give the mnemonics for the "O"b and
"l"b mode values respectively. For example, If the value of the
sequential mode is "backspaceable", the second pair of bits In
bmode would be "Ol"b; the "O"b indicates the mode is applicable
and "l"b indicates that the value If backspaceable".

The bmode string Is only interrogated and is never altered by the
outer module. Interrogation consists of comparing pairs of bits
in bmode with test pairs, and can be accomplished several ways.
First, the desired bit pair can be extracted by the "substr"
built-In function In PL/1. A better method Is to use an
auxiliary based structure designed to permit mnemonic
Interrogation. The declaration for such a structure follows.

del 1 test based (p),
2 access bit (2),
2 seq bit (2),
2 data bit (2),
2 logical bl t (2),
2 read bit (2),
2 rewrite bit (2), ,

The pointer Q is computed from p = addr(pibp-)pib.bmode). A test
for the backspaceable submode consists of comparing (p->test.seq)
with "Ol"b. A similar structure can be used for testing the
bdisp string.

Mode locations in bmode for which no MCS entries exist are filled
wl th "10" by the handler.

,

,-. ..

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.27 Page 5

~ getmode Outer ~

The user of an outer module (which may be another outer module}
can make the following outer call to obtain the callee's mode
states.

ca11 getmode(ioname,bmode,status);

del loname char (32), /•loname associated with cal lee•/
bmode bit (72), /•returned mode states•/
status bit (144); /•getmode call status•/

The interpretation of the returned mode bit string, the callee's
current bmode, is the responsibility of the caller.

~ ~ Control Strycture

The Mode Control Structure (MCS) Is the driving table for the
Mode Handler. A specially•tatlored version must be produced for
each outer module produced. Inasmuch as most of the mode
handling Is constrained by lOS standardization of mode behavior,
MCS production Is expected to take the form of editing a standard
MCS representation and "compiling" the edited version. The tools
for MCS production will be described In an appendix to be added
to a later version of this section.

The MCS has the following declaration.

del 1 roes based Cmcsp),
2 size fixed bin,
2 flrst_dtsp fixed bin,
2 flag,

3 first sw bit (1),
3 not_found bit (1),
3 hlst bit (1),
3 dset bft(l),

2 mode ,(N),
3 mO (2) char (8),
3 m1 (2) char (8),
3 bits,

4 nextxl bit (18),
4 nextx2 bit (18),
4 bindex bit (6),
4 ref_val bit (1),
4 ref_type bit (1),
4 applic bit (1),
4 cur_val bit (1),
4 overridden bit (1),
4 old_val bit (1),
4 change_sw bit (1),
4 hlst_appllc bit (1),
4 hlst cur val bit (1),
4 hist overridden bit (1),

/•mode control structure•/
/•control array size•/
/•Index of first disposal mode•/

/•set to 1 by handler on first call•/
/•O=error, l•pass on•/
/•l•one level history valid•/
/•mode$dset has been called•/
/•mcsp->mcs.slze•N•/
/•mnemonics for value•O•/
/•mnemonics for value•l•/

/•Index In MCS of first related mode•/
/•index in MCS of second related mode•/
/•index of mode in bmode or bdisp•/
/•reference value•/
/•O•default, !•required•/
/•applicability switch, O•appllcable•/
/•current value of mode•/
/•mode-overridden switch, 1•overrfdden•/
/•overridden cur_val•/
/•changeability sw, O•changeable•/
/•one level history•/
!•of wrfteable bits•/
I* II •I

Page 6 MULTICS SYSTEM-PROGRAMMERS' MANUAL
•

Section BF.2.27 ,,

4 hlst old val bit (1),
4 hlst:change_sw bit (1),
4 pass b i t (1) ,

I• II •/

I• II .,

I• pass-on switch, l•pass on•/
(1), /•reset-nextl-appllc switch, when
(1), /•reset-next1-appllc switch, when
(1), /•reset-next2-appllc switch, when
(1), /•reset-next2-applic swltch, when

4 reset_nxl_appl_O bit
4 reset_nx1_app1_1 bit
4 reset_nx2_appl_O bit
4 reset_nx2_app1_1 bit
4 set_nx1_val bit (1),
4 set nx2 val bit (1),
4 next1_va1 bit (1),

/•If 1, set next1 value•/
/•If 1, set next2 value•/
/•nextl value•/
/•next2 value•/

val=O•/
val=l•/
val=O•/
val=l•/

4 next2_val bit (1),
4 nextl_over_O bit (1),
4 next1_over_1 bit (1),
4 next1_over_val bit (1);

/•set-nextl-overrlde switch, when val=O•/
/•set-nextl-override switch, when val=l•/
/•nextl override value•/

The MCS contains modes for both bmode and bdlsp; the latter
follow th~ former and begin at MCS Index flrst_dtsp. Each "mode"
represented In the MCS Is binary and can be related to two, one,
or no other modes. Thus the MCS represents all modes and mode
relationships In the form of a binary mode tree. The mode trees
correspond to those given In Section BF.1.02, except In those
cases where more than two submodes occur at the same level. Such
extrablnary submode levels are expanded into a series of binary
levels, with the default submode at the last level. For example,
the output code mode has three submodes, straight (STR), edited
(EDIT), and normal (N). In the MCS the output code mode is
represented by two modes: (1) output, having the values
not-straight and straight; and output1, having the values normal ~
and edited. If output Is straight, output1 Is Inapplicable.
Thus the two pairs of bits representing the output code mode are
"Ol10"b, 11 000.111 b, 11 0000 11 b, and 11 101011 b for straight, edited,
normal, and totally-Inapplicable, respectively.

The flrst_sw Is used by the handler to determine whether or not
modes not present In~ should be set to their default value.
The not_found swltc~ determines the ~reatment of mo~es fpund in
~but not In the MCS In the manner described earlier.
Standard lOS modes not relevant to a particular outer module can
be omitted from It's MCS, provided the not-found alternatives are
approprIate. It· shou 1 d be noted that the not_found swl tch
applies to all modes handled. The Inclusion of Inapplicable mode
(with the applicable switch set to Inapplicable) permits
Individual treatment of such modes. The hlst and dset flags
together with the five history bits associated with each mode are
used In the Implementation of the modeSbackup call.

Space Is provided for two eight-character mnemonics for each mode
value. nextxl and nextx2 are the MCS Indices for the first and
second related mode respectively; nextxl Is Intended to Indicate
an upper (superior) mode, and nextx2 Is Intended to indicate a
lower (Inferior) mode. When only one related mode exists, either
index may be used, except that an override can be propagated only
to a mode Indicated by nextxl. An absence of a related mode Is
Indicated by zero indices. btndex Indicates the location of the

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.27 Page 7

mode within bmode or bdlsp. The applicability switch, applfc,
indicates whether or not a mode Is currently applicable; appllc •
0 indicates the mode Is applicable. If ref_type Is zero, ref_val
contains the default mode value; If ref_type Is one, ref_val
contains a required value. The current value of the mode Is kept
In cur_val. The pair of bits returned In bmode or bdisp consists
of appllc and cur_val. The changeability switch, change_sw,
Indicates the Intrinsic changeability of the mode. If the
pass-on switch, pass, Is one, the mode Is concatenated on the
right end of the pass-on string, oassmode.

The next set of bits generally Indicate the effect of this mode
upon any related modes. For example, if cur_val Is zero and
reset_nxl_appl_O Is one, the mode indicated by nextxl, If any, is
to have Its applicability switch reset (set to one). If
set nxl val Is one, the mode indicated by nextxl is to have it
cur:val-set to nextl_val, with all attendant ramifications. If
cur_val Is zero and nextl_over_O Is one, the mode Indicated by
nextl Is to have Its cur_val replaced by nextl_over_val; the old
cur_val Is saved In the next mode's old_val. Also, If cur_val is
zero and nextl_over_O Is zero, any override on the mode indicated
by nextl Is removed. The overridden switch, If one, Indicates
that this mode has been overridden by some other mode. While
overridden, mode changes are accepted but are kept In old_val
rather than cur_val.

l;.

Page 8 MULTICS SYSTEM-PROGRAMMERS' MANUAL Sect ton BF. 2. t''t ~ ...

Table 1.

Mode bit strtng assignments and associated mnemonics for bmode. ~

Mode or
Index sybmode m.Q. ml

1 access Q D
SEQ RAND

2 seq F B
FOR BACK

3 data G p
LOG PHY

4 logical L s
LIN SECT

5 read R ""R
READ ""READ

6 rewrl te w ""W
WRITE ""WRITE

7 append A ""A
APP ""APP

8 input RAW

9 lnput1

10 lnput2

11 lnput3 c
CANON

12 output STR

13 output1 N EDIT
NORM

14 attach PVT

15 attachl NODMP

16 rdsync RA RS

17 wrsync \'lA ws

18 wksync KS KA

19 syncrd ""YR YR

20 syncwr ""YW YW

21-24 Unassigned.

25-36 Outer module spectal modes.

"-" . blanks

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.27 Page 9

Table 2.

Mode bit string assignments and associated mnemonics for bdisp.

Mode or
Index submode mO m!

1 detach OEV

2 detach1 DEV1

3 detach2 MIN MAX

4 reserve R H
REL HOLD

5 load u M
UNLOAD MOUNT

6 save s A
SAVE AVAIL

7 restart RESET

8-36 unassigned.

"-" = blanks.

Table 3.

Status bits returned by the Mode Handler.

~ Meaning~ egya] ~ ~

1 invalid~(~, ~, and change sw).

2 invalid history (backup).

3 first call not~.

4-18 unassigned.

