
-· 
MULTICS SYS~EM-PROGRAMMEBS' MANUAL s·ection BF. 2.] 2 1 

Pub11sheda 01/10/68 
(Supersedes, BF.10.01, 08/14/67) 

output Cede Conversion 

D. L. Stone 

This section describes the conversion of ascii character strings 
to strings of device codes by ~ha output half of the Code 
Conversion Module (CCM). It is intended to be useful to those 
people interested in the specification of output code conversion 
tables or in the workings of the CCM cdde which uses them. The 
call interface of the CCM is given in BF.2.30. 

Output code conversion is necessary for the following devices 
supported by the Multics IOS: 

typewriters 

line printers 

card punches 

IDM 1050, 2741 
'ITY !135, 1'137 
GE PRT202 
IBM 1403-n1, 1403-2 
GE CPZ200 
IBM 1442•5 1 2520-a1 

The peculiarities of each of these devices are reflected by a set 
of driving tables for each one. Duting the processing of output 
data for one of these devicas, ah output driving table is 
selected to accord with the user's choice of code conversion 
mode; that table will be Used to initialize the CCM and, during 
each g]!£~! call, to guide it in translating the data. In order 
to change the way in which the output code conversion is 
performed, a new table must be selected (for the same or a 
different device)-. The makeup of the tables is detailed below 
and the selection and means of construction are given in BF.2.33. 

The driving tables are the heart of the CCM's function. Each 
output driving table consists of three types of information: 1) 
initialization information, including certain printing 
characteristics and har~ware capabilities, 2) the character 

0 table, which specifies the desired treatment of each character 
which may be Frocessed by the CCM, and J) the escape arrays, 
which contain sequence~ of characters which are to replace 
certain characters as specified by the character table. All 



2 MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BF.2.32 

these categories are descrited at great length below. 

The declaration of an output driving table for the CCM is 
below. For all switches~ a "1"b indicates an affirmative 
to the guesticn fOSed by the switch. 

given 
answer 

del 1 outccm_ table based (p), 
2 relps, 

3 (ctable_relp, 
ascii_relp, 
device_relp, 
modes_relp, 
ctl_modes_relp) bit (18), 

2 sizes, 
3 (ctable, 

ascii, 
device, 
modes, 
ctl_moqes) bit (18), 

2 initialization, 
3 num_overstrikes bit (9), 

3 software_esc tit (9), 
3 prt202 bit (1), 
3 pad bit ( 17) , 

2 character_ table (0: 51 1) , 
3 action bit (6), 
3 ls_count tit(3), 

3 device code bit· ( 12), 
3 esc_length bit ( 6), 
3 esc_otfset bit (9), 

2 escape_strings (N) , 
3 escapes char ( 1) , 

2 device_escafe_strings (M), 
3 escapes bit (element_size), 

/*relps to vble length data*/ 
/*to "character_table"*/ 
/*to "escaFe_strings"*/ 
/*to "device_escape_strings"*/ 
/*to "hardware_modes" array*/ 
/*to "ctl_modes*/ 

/*max num simulated backspaces 
per print position*/ 

/*in ascii*/ 
/*~1"b: each line begins in upper case*/ 

/*what to do with each character*/ 
/*how does this char affect the 

print position; 0 = backspace, 
1 : no change; 2 : graphic*/ 

/*left justified*/ . 
/*index into escape tables*/ 

2 hardware modes (num hardwaLe modes) , 
3 stat~s iit (1), - -
3 pad bit (2) , 
3 mode_index bit (6), 

3 esc_length bit (9), 

/*correlated bit index in DSD 
hardware status strinq*/ 

3 esc offset bit (18}, /*indices into "device_escape_strings"*/ 
2 ctl_modes (num_ctl_modes) , 

3 fake tit. (36); """" 



/ ...... 

,.. .. 

/" ' 

~ULTICS SYS!EM-PROGRAMMEBS' lANUAt section IlF.2.32 3 

since all of the conve£sion functions of the CCM are controlled 
by the driving tables, a detailed description of the output 
tables will elucidate all functions of the output ~art of the 
CCM. Since the character table controls the flow, we begin with 
that. 

The character table is an array of information about the way in 
which each of the 512 nine-bit characters is to be treated. As 
ascii data is processed ty the CCM, the binary equivalent of the 
character code is used as an index into the character table. The 
six bits of information in the "action" entry are us~d as an 
index into a table which specifies the appropriate action by the 
CCM for the char~cter. The possible actions are specified below 
with their octal equivalents. 

0 

1 

2 

3 

Append the actual bit configuration of this character 
to the output tuffer; useful for devices which accept 
ascii or some subset thereof. 

Append the bits given ty the "device_code" Jntry for 
this character to the output buffer. 

Mode change; this character may cause a change in the 
physical ~tate of the device which will affect its 
Frinting (e.g.- red-ribbon-shift or case-shift). Use 
the 11esc_offset" field to get the index which 
corresponds to this mode and change the status of the 
mode in the current device status tlock. The 
"esc_length" field is "XXXO"b for set and "XXX1"b is 
interpreted as reset. Having set the status, use the 
appropriate "hardware_modes" pointer and length pair to 
find the device codes to be placed in the output 
buffer. See discussion of hardware modes later in this 
section. 

This character requires that a certain mode be in a 
certain state for proper printing. "esc offset" , 
interpreted as a fixed binary number, gives the mode 
index and "esc_length" is "XXXO"b if mode should be set 
("XXX1"b if mode should be reset). If necessary, add 
the device codes to change the hardware mode. App~nd 
the "device_code" to the output buffer after verifyin~ 
this mode. 

Escape this character by means of the standard octal 
software escape sequence specified in BC.2.04. 



5 

6 

7 

10 

1 1 

12 

13 

14 

15 

16 

17 

20 

MULTICS SYSTEM-PBCGBAMMERS' MANUAL Section BF.2.32 

Escape this character using the ascii character string 
specified ty the "escape_length" and "escape_offset" 
index into the "escape_strings". 

Escape this character using the device code string in 
"device_escaiJe_strings" specified by "escape_length" 
and "esca~e_offset". 

Ignore this character. The output will aFfear just as 
it woYld have if this character had not been in the 
character string. 

Simulate a backspace. This action is meant for those 
devices which can not backspace but possess a 
carriage-return capability (e.g. the PRT202). 
Eackspaces are simulated by using two print lines with 
a carriage return between them. 

This character will end the print line {NL). Apply the 
appropriate sequence to the output buffer using the 
"cscape_length" and "escape_offset" entries dS an index 
into "device_escape_strings". 

As in category 1 1 (NP). (new page). 

carriage-return; reset line_size and use 
"escape_length" and "escape_offset" as above, if bit 7 
of "device code" is 0. Otherwise, simulate a 
carriage-ret~rn as if it were the appropriate number of 
backspaces to get to the beginning of the line. This 
category takes into account those devices which can 
overprint tut do not respond to a single carriage 
return character. (PRT202). 

Vertical tab; increment counter appropriately, then 
use "device_escape_strings" as for category 11. 

Horizontal tab; see category 14. 

Half-line feed (HLB); increment counter, then use 
"device_escape_strings" as for category 11. 

Hal~-line feed (f:lLF) ; see category 16 .. 

Undefined character; this category is treated as 
category 4 except that the "undefined character" bit is 
set in £212!Y2 upon return. 

Each character processed by the CCH is treated according to the 
category in which it is placed by the character_table in tbe 
driving tatle specified. The creator of the driving table can 
tailor the processing of the CCM to suit any output device and;or 
personal fancy since this mechanism allows a completely general 

•, 



ftULTICS SYSTEM-PBOGRAMMEBS' ~ANUAL Section BF.2.32 5 

character-by-chatacter transliteration. 

To allow faster processing by the CCM, each character 
assumed to be in a generalized canonical form. 
definition of the criterion for canonicalization is 
in this section. 

string is 
A precise 

given later 

The entry "ls_count" in the character table can take on the values: 
octal 0 for backspace 
octal 1 for ncn-frinting characters (as rrs) 
octal 2 for graphics 
It is used to reflect the change in horizontal print position 
caused by a character. 

'!be "device_code" entry in the character_table contains the {six, 
nine or twelve-bit) device code which corresponds to the ascii 
character cQ the intended device (the GIOC only transmits six
and nine-bit elements). 

The ~escape_length" and "escape_offset" entries specify a string 
of characters in either the ascii "escape_strings" array or the 
"device_escape_strings" array. The intended string of characters 
is of length escape_1ength and begins at the escape_offsetth 
character in escape_strings. Since the asc11 strings are fed 
back into the "character_table", no asc11 characters requirinq 
escapes are allowed in the escape strings. 

The "escape_strings" array in the driving table is 
packed array of characters representing ascii escape 
~he strings are in nc particular order. 

simply a 
strings. 

The "device_escape_strings" array, similarly, is a packed array 
of fields which represent device code sequences. Since the 
"ls count" associated with such a string can only reflect a 
change of one print position, it is not advisable to use these 
strings to introduce sequences which cause a change of more than 
one print position (other than those which cause predictabl~ 
actions as Nt, NP, CR). 

The two escape arrays are intended for different purposes. The 
ascii array should only te used when the escape sequence is 
ambiguous in device code; that is, when case-shifts or other 
device status can affect the interpretation of the sequence. The 
PBT202 is an example of such a device. The device code array can 
be used for all other escape sequences and for special sequences 
which take the place of a single character -as with new-line and 

r ~arriage-return en the PRT202. 



6 MULTICS SYSTEM-PBOGBAMMEBS' MANUAL sec t ion llF • 2 • 3 2 

In order to implement character table "action" entry 3. and the 
~set_status" call, the CCM needs information on all of the 
character-settable device hardware modes. The initial status of 
the modes is assumed from the default tSE in the driving table 
segment header. In the DSB, the thirty-five bit 
"hardware status~ string provides the setting of each of (a 
potentialr thirty-five modes. A "0"b in the nth bit from the 
left is taken to mean that the nth mode is "set" and "1"b, 
"reset". Whenever it becomes necessary for the CCM to change the 
setting of a hardware mode, it uses the hardware_modes array as 
follows: 

1. The "mode_indexu entry (regarded as a fixed binary number) 
specifies which har~ware mode this entry refers to. 

2. The ttstatus" entry specifies whether the indices "set" or 
"reset" the mode. 

3. 11esc_length and "esc offset" specify a bitstring in 
"device_escape_strings" ;hich will cause the specified 
hardware mode to tecome "set" or "reset" according to the 
"status" entry. 

This use of the 11 hardware_modes" array imFlies that there are two 
entries for each useful mode -- one which specifies the "setting" 
sequence and one which specifies the "resetting" sequence. 

An example of the use of hardwdre modes for a 1050 typewriter 
follows: 

The hardwaLe_modes array has four entries: 

mode 1 -- interpreted as ribbon-shift 
"set" equated to black 
"reset~ equated to red 

hardware_modes(1).status = "0 11 b 
hardware_modes(1).mode_index = "000001"b; 
esc_ (length and offset) would point to 
"device_escape_strings" array containing the 
sequence which makes a 1050 shift to black. 
point to the red-shift character sequence. 

an entry in the 
six-bit character 

Entry two would 

The action entry in the character table for BBS and BRS (ascii 
016 and 017) would be 2; "esc_offset"would be 1; "esc_length" 
would be 11 C001"b for 016 and "0000"b for 017. No other action 
entries would specify mode 1. 

mode 2 -- interpreted as case-shift 
set equdted tc lower 



PULTlCS SYSTEH-PBOGRAMM!RS' MANUAL Section BF.2.32 

reset to UJ?per 
hardware_modes(l).status = "0"b 
bardware_modes(3).mode_index = "000010"b 

7 

~he set and reset sequences would be the 1050 six-bit codes to 
shift to lower and to upper cas~, resJ?ectively. No asc11 
character would have a character table entry specifying this mode 
index. (2) from an "action" of 2 (set or reset mode); but any 
grapb1c which pri~ts only in one case-shift mode (e.g. "A") 
would have an act1on entry of 3 and specify hardware mode 2 (and 
for ~A" , "esc_length" would be "0001"b to indicate that reset or 
upper case was to be in effect before the device code could be 
appended to the output buffer). 

mode 3 -- interpreted as line feed mode 
set equated to single line 
reset to double line 

status = "C"b 
No ascii characters currently defined deal with this mode. The 
DSM can cause the CCM to change the hardware setting of this or 
any othet mode by means of the "!~!-§!~!!§" call (for which see 
BF.2.30). 

1he ~ctl_modes" array will te used for characters which have 
peculiar interp~etations and hardware effects (such as the asc11 
~escape" character on the new model 37 teletype). It will be 
clarified when the Hultics policy towards such characters is 
defined. 

"num_overstrikes" specifies the maximum number of overstrike 
lines to be created during backspace simulation. 

~software_esc" gives the ascii character which is to }?recede all 
octal escape sequences on output. 

~prt202" indicates that the case-shift mode (number 2) is always 
to be put to upper ("reset") at the beginning of a line. 

Cne of the parts of the CCM implementation which requires further 
explanation is escaping. The replacement of a given asc11 
character ty a string of asc11 characters is accomplished hy 
temporarily changing the input pointer and index so that they 



8 MULTICS SYStEM-PBOGRAMMEBS' ~ANUAL section BP.2.32 

Foint to a buffer containing the desired ascii characters. The 
current pointer and index are saved and testored when the .escape 
buffe:t has been exhausted. The count of cha:racters left 1.n the 
escape buffer is put into the normal compa:tison fox: end of input 
buffer. Since this mechanism is not recursively implemented, no 
further characters specifying ascii escape should be put into an 
ascii escape stting. 

Replacement ty a string of device code characters 
use by DIM w:rite:rs whose devices require special 
certain characters ( carriage-:return, new-line). 
string of output characters is placed in the 
buffer directly. 

is intended for 
sequences for 
The specified 

current output 

Another part of the CCM implementation which needs explication is 
backspace simulation. This feature of the CCM was included to 
deal· with the PBT202 line printer which has no ability to handle 
overstrikes in its hardware. The feature is potentially useful 
for any device which has an ovetprinting capability but no 
backspace. A backspace is simulated by creating a new output 
line and padding it with blanks until the desired ptint position 
is reached. The chatacter to be overstruck is then put into 
position. When the end of line is reached, the CCM retutns all 
of the lines cteated in this way with a "cartiage-return~ 
equi~alent except the last one, which is issued with a "new-line" 
equivalent. Clearly, any output code conversion table which ...J 
specifies backspace simulation must also include entries for both 
new-line and carriage-return, since both those entries will be 
accessed by the CCM ditectly. 

The ~ackspace silulation is implemented by changing the out~ut 
buffer pointer and length to a new output buffer which is first 
padded to reach the proper print position. A list of output 
buffers for eacb line is kept the maximum number · of such 
buffers is controlled by "num_overstrikes" in the table. For 
each buffer a FOintet, the current size in output elements and a 
device status tlock are maintained. The DSB is set to the status 
assumed at the beginning of tbe line so that appropriate changes 
of status can be made between lines , if necessary. · When a 
backspace is encountered in the data processed by the CCM, a 
check for contiguous backspaces is made. A cluster of backspaces 
generat~s a count which, subtracted from the print position of 
the current output buffer, yields the desired print fOsition for 
the next character. The print positions of all currently 
allocated output buffers are checked to see if any is less than 
the desired one. If one such is found, that buffe:r becomes the 
cu:rrent one, spaces are insetted to adjust the print fOsition if 
necessary, and ptocessing continues. If no currently allocated 
output buffet has a Frint position less than the desired one, 
then a new tuffer is allocated, provided that the limit has not 
been reached. If the limit is met, then the "non-canonical" bit 
is set in £§!~1Y~ and d retu:rn is made. Previously translated 
data is returned as usudl. The CSM can determine the beginning 
of the non-canonical data from the "oqtput_tbe", which will have 



-"' 

MULTICS SYSTEM-PBOGRAMMEBS' MANUAL Section BF.2.32 

line pointers only to the translated data. 




