
TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
0. R. Widrig
BF.20.01
12/01/67

Slight modifications have been made in the descriptions.
of the "define$channel" call to reflect the latest GIM
changes. A 1 so, the "def 1 ne $ re 1 ease" ca 11 has been
clarified slightly.

~l!}'.. T!CS SYSTEM-PROGRAMMERS' MANUAL SECTION BF. 20.01 . PAGE 1

Identification

Published:
(Supersedes: Bf .20.01,

BF .20 .. 01,
BF.20.01,

DCM/GIM Interface Specific~tions
H. S. · Magnuski anQ D. R. Widrig

Pyrpgse

12/01/67
07/11/67;
05/10/67(
12 /15/66)

This document and the MSPM section on the. internal structure
of the GIM (BF.20.02) describe the hardcore modules which
have direct control over all of the input and output o·perations
in Mu 1 tics. The input to the GIM is a sequence of ca 11 s
from a Devic~ Control Mod\Jle (DCM) which defines the str(ltegy
for running a particular device in the system. The output ·
of the GIM is a list of instructions issued to the GIOC
adapter which carries out the actions specified by the
input calls. This document first explains how a strategy
(example: first activate the channel and turn on the
request-to-send lead. Send two synch characters followed
by twenty characters of data from buffer alpha.) can be
converted into a form understandable and acceptable to
to the GIM. It then explains how to use the calls to
the GIM to translate this strategy into Gibe ~nstructions
and feed these instructions to the GIOC adapters.

Introguction

In designing a strategy for a device the OCM writer has
a choice of no more than five different methods or tyees
of control. The types of control are ·

a) Channel Command Words, used primarily for activating
or terminating action in a GIOC channel.

b) Command Data Control Words (DCW's) for setting
up a GIOC channel.

c) Transfer OCW, an unconditional jump instruction
for the GIOC.

d) Literal Dew. for sending a stream of constant
characters to the device.

e) Data OCW, for transferring data to and from the
external world.

In ~ddition to the five controls abov~:-, there is one J:..Y-12..~
of return information available to t'··e ocr-~

f) Interrupt Return Status.

MUL.TICS SYST2~1-PROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 2

Items a to f constitue six ty~s (hereafter labeled "op_type")
of control information which can be p~ssed back ancr forth ·
between the device and the device manager~ and the!;.e six
op_types are the only means available to the DCM to control
its device.

The Class Driying Tabl~

It was mentioned above that all six op_types may not be .
available to a particular OCM. The restrictions on op_types
and much other vital information is contained in a set
of tables known as the "Cla~s Driving Tables 11 (COT's). ·
The COT's are by far the most valuable and sensitive tab·les
used by the GIM~ for they contain both the information
needed by the OCM to run its device, and the restrictions
imposed on that DCM to insure the security of the I/O
system.

In order to perform any IIO operation the DCM must first
have access to the Class Driving Table suitable for his
device. The DCM never accesses the COT directly, only ..
through calls to the GIM. Thus, the access right to the .
table implies the permission to use the class of instructions
contained within the COT. The access rights to the table
are contained within the file system access control mechanism
and thus the security of the IIO system depends primarily
on the proper use of these access rights •.

Each Class Driving Table for the GIM is in reality an.
array of structures with the following declarations:

del 1 edt based (cdt;ybt r),
2 type_offset(6 bit(18), I* offset into type info
2 free area ((1 024)); I* area for sub-structure

del 1

,"r I
-.-:I

type based(type_ptr),
2 type mask bit(84), I* initial value for type *I

nfieTds bit(24), 2 1," numbe.r of field items *I
2 field_offset(100)bit(18); I* offset into field info *I

del 1 field based(field>)tr),
2 field_action bit(), I* action code *I
2 field_end bit(15), I* shift factor for action

code ,-r I
2 field_mask bit(84), I* field definition mask *I
2 nvalues bit(6), I* number of values for

field *I
2 value(O:nvalues)bit(84); I* substitution values *I

SECTION BF.20.01 PAGE 3

Each of the six major structures for the COT array corresponds
uniquely to the six op-types mentioned above:

edt (1) = interrupt status return
edt (2) =:::! channel command word
edt (3) = command DCW
edt (4) = transfer DCW
edt (5) = 1 i tera 1 DCW
edt (6) ::: data DCW

The substructures within each array have their properties
explained in the following paragraphs.

The eighty-four bit string 11 type mask'' initializes the
pseudo-word being generated during the first time one
of the op-type substructures is called into action. These
pseudo-words which are generated combine into either
pseudo-DCW-lists or pseudo-CCW-1ists, and these pseudo-lists
are eventually transformed into the series of DCW's which
control the l/0 activity of the GIOC.

"Type_mask" is used to indicate which bits are to be initialized,·
to be zero or one. Seventy-two of the eighty-four bits
generate the pseudo_DCW; s!x bits are for use during the
global change call, which 1s described later. Another
bit indicates that the DCW will be used for reading, another
indicates writing, and a third is used by the GIM to control
certain read-write operations. Of the remaining three
bits, one is used by the disc DCM only, the second indicates
that this DCW will terminate activity on the channel,
and the third is reserved for use by the GIM.

The second level element "nfields" gives the size of the
''field' substructure array of the CDT. The concept of
a "field" in the pseudo-word is an important one, for
the editing of the contents in the fields of a pseudo-word
is the only means of creating specialized l/0 instructions
for the adapters. Each element of the field substructure
array defines a field in a particular op type, and. the.·
only fields which can be altered by the DCM are the ones
specified within the field substructure array.

The manner in which a given field can be altered is indicated
by the value of the element called "field action". There
are three possible kinds of actions which-may be used
to change the contents of a field:

MLH_TICS SYSTEfv:-PROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 4

!. mask-value substitution
2. literal substitution
3. data address substitution

Only one type of field_action can be specified for a given
field.

In mask-value substitution the bits to be chan~ed are
chosen by 11 field_mask11 , and the Value of the bltS is viven
by the element "value (i)" in the value array. In th1s
case the concept of a field is extended to include a "pattern"
of bits sprinkled throughout the pseudo-word, not just
a contiguous block of bits starting at bit n and ending
at bit n + x. Figure 1 shows how an 18 bit pseudo-word
might get modified after mask-value substitution. The
field and value numbers used in the examples are fictitious
and are used for demonstration only.

Figure 1A shows the initialized pseudo-word for a particular
op_type. Figure 1B is the mask used for field 1 and Figure
1C is value number 3 of field 1 for this op_type. Figure
10 is the result of mask-value substitution on Figure
1A.

In literal substitution, the right most bit position of
the field in the pseudo-word is specified by "field_end",
and the effective size of the field is determined by "field_
mask". The literal to be substituted into this field
is handed to the GIM by the DCM in the "changes" structure
which will be specified later in this paper.

figure 1f shows the result of a literal substitution of
the 1 i tera 1 •• 0111 OO" b performed on Figure 10.

In data address substitution the address of the data is
handed to the GIM by the DCM in the ••changes" structure
which will be specified later.

When the substitutions to the fields in the pseudo-\,/1/Crd
have been completed, the pseudo-word is combined with
the four bits of op type to become an element in a pseudo­
list. Each pseudo-Tist is an array of structures with
the following declaration:

del 1 pseudo list (size) based (p), /*size is the length
2 op type bit (4), of the list */
2 pseudo_word bit (84);

~ULTICS SYSTEM-.PROGRAMMERS"' MANUAL SECTION BF.20.01 PAGE 5

Fig. 1 - Generation of 18 bit pseudo-word through
field substit~tion

A. 01"1 001 100 111 1 1 1 000

1 18
a.) Initialized pseudoword after type_mask, operation

B. ~ 000 1 1 1 001 000 000 001 ,J
c. I 000 101 001 000 000 000

1 18

b.) Definition of field 1 and c.) value 3 of field

o. f 011 101 101 111 111 000
1 "18

d.) Pseudo word after mask-value substitution

E.

'
000 000 000 1 1 1 1 1 1 000 J

1 18
e.) "field mask" for field 2. "field end" = 15

.. - -
F. I, 011 101 101 011 100 000 J

18

f.) Pseudo word after litera 1 substitution with
v a 1 ue = " 0 1 11 00" b

1.

rv.•_:·_ TICS SYSTEf\1- PROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 6

If any pseudo-word in the pseudo-list is a data DCW# then
the~e will also be created an address list which is in
one-to-one correspondence with the pseudo-list that created
it. The declaration of the address list is

del 1 addr_list (size) based (pL /*optional data address
array */

2 segno bit (18) /*segment number from.addr ptr */
2 offset bit (18~; I* segment offset from addr ptr */

The one op-type which is not used to generate a pseudo-word
is "interrupt status return'' • In this case the C 1 ass
Driving Table is used to interpret an incoming status ·
word. The interpretation of this word is outlined when
the GIM "request$status" call is specified.

In summary# the DCM can translate its device strategy
into suitable instructions by specifying an op type# the
fields within that op_type# and the contents wTthin the
fields. The allowable op_types, fields and contents for
a particular device manager are contained within the Class
Driving Table to which that DCM has access. ·The generation
of the Class Driving Tables and their contents are described
in Section BF .20.06. The pseudo-words which are 9enerated
through use of the COT's are formed into pseudo-l1sts,
and these pseudo-lists are again transformed into the
real lists of instructions which control the input and
output devices in Multics.

The next section of this paper describes how these pseudo-lists
can be created and destroyed, and how these lists can
be used to control the activities of the peripheral equipm~nt.

Creation andControl of Pseudo-Lists

In order for any pseudo-list to be created the user must
first gain control of the logical channel he wishes to
operate, and then his DCM must have access to a CDT table
to create the pseudo-words to be used in controlling the
channe 1.

Obtaining control over a logical channel is not done with
a call to the GIM, but is done with the help of a third
party such as the Answering Service or Transactor (BT.1.02).
When the Transactor decides it can allow the DCM to use
a particular channel it makes the following privileged
ca 1 1 to the G I M :

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20.01 PAGE 7

define$channel (device_name, device index, event_id, rtn_stat)

del device_name char(*),
device index fixed bin
event_Td bit

rtn_stat bit

(, 7),
(70),

(36);

I* device to be used *I
I* user device tag */
I* event channel

identification

When the DCM has gained <;ontrol over a particular logical
channel, the next step needed to create a pseudo_list·
is to define a class of op_types to be used with a logical
channel. While trying to define this class of op_types
the DCM's access rights to the corresponding COT are checked,
and if the call is valid, then the DCM can begin to create
a new pseudo_list. The call to define a class of op_types
looks like:

define$class (device_index, class_id, rtn_stat)

del device_index fixed bin (17),

class_id char (*),
rtn_stat bit (36);

I* index of device in DSTM
tables *I

l* class identifier *I
I* return status (from GIM) *I

The argument "class id" specifies the name of a segment
known to the GIM whTch contains the COT information.

The meaning of the bits in rtn stat will be specified
in the summary of GIM calls and data ba~es, BF .20.03,
andBF.2o.os.

Assignment of Space for thE; Pseudo-List

Once the DCM has defined a class of operations, he must
then tell the GIM that he wants to create a new pseudo-list.
This is done by issuing the following call: ·

define$1ist (id, device_index, lgth, rtn_stat)

del id bit (24), l* list identifica.tion (from
GIM) *I

device index fixed bin(17),
lgth fTxed bin (12),
rtn_stat bit (36) 1 ·

I* user device tag *I
1* list· length *I
I* return status (from GIM) *I

There are two primary purposes for issuing this call.
First, the argument "lgth11 tells the GIM how much space
to allocate for that pseudo-list in a free storage area.
The free stora9e area is part of a data structure which
is connected w1th the logical channel specified in the
second argument. The free storage area is pageab 1 e a·nd
• 1 t d • ... b 1 • '" ' '"'""M 1s .oca e 1n a segmen~.. e ong1ng · .. c ... ne .. ,J.11,.

MULTICS SYSTEM- 0 ROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 8

The second major purpose for issuing this call is to return
to the DCM an identification number or name to be used
in referring to the list in later calls. The "id" is
some unique number concatenated with the logical channel
number, and thus the 11 id11 gives the GIM such information
as what COT to use in altering portions of a particular
list.

All of the lists generated for a particular logical channel
are kept in a structure which is part of the Logical Channel
Table (LCT). The LCT, maintained by the GIM, keeps track
of the lists as they are created and destroyed, and it
makes a record of their size, composition and location
in storage.

Both the LCT and the bits of rtn stat for this call are
explained in the summary of the GIM calls and data bases.

\)se of tbe Change-List Call to tbe GIM

There is no call to the GIM which was specifically designed
to take a new and completely empty list and fill it with
freshly formed pseudo~words. Instead, the call to modify
an already existing list was defined so that the conversion
of a null or empty list to a new list would go smoothly
and conveniently. Thus an explanation of the "change"·
calls to the GIM win also show how a newly defined 1 ist
can be filled in from scratch. The t:>asic change call
to the GIM looks like this: ·

change$11 st (id, indx, h·ll o, rtn_stat, ch~ngesp [, changesp])

de 1 id bit (24), . I* 11 st identification ,':/
indx fixed bin (12), I* index number of first change *I
changesp ptr, I* pointer to change structure *I
hilo bit (3),
rtn_stat bit (36); I* return status (from GIM) ,':1

In the argume11ts to this call 11 idu is the 1 ist identification
number passed back from the GIM when this list was defined
via the ''define$1ist'' call.

The second argument 11 indx" requires some further explanation.·
The term index, as used in talking about the GIM lists
and pseudo_lists, always refers to the position of an
element in the list relative to the .first i tern in that
list. So, the third element in a list would have an index
of 3, and the highest index possible in a list is the
value of the argument '' 1gth11 w.hen the 1 ist was defined.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 9

The "hila" argument relates the status of edits on active
lists. It is fully discussed in BF~20.02, Internal Structure
of the GIM. The argument 11 indx11 as used here is effectively
a pointer to the first element in the list which will
undergo changeo The changes to be made to this element
are all contained within the structur? called "changes••
which has this declaration:

del 1 changes based (changesp),
2 op_type fixed bin(17),
2 n_changes fixed bin(17),
2 change (n changes),

3 field fixed bin{17),
3 value fixed bin(24),
3. address ptr;

I* type of edit */
I* number of sub-edits *I
I* field number *I
I* value used in edit ~I
I* data address *I

Notice that there are brackets aro.und the second "changes"
structure pointer in the change$1ist call. This is used
to indicate that there may be more than one "changes"
structure as an argument in the call. The first argument
is used to change the pseudo-word pointed to by "indx",
and each addi.tional structure argument modifies the next
sequ?ntial pseudo-word in the list. Through this mechanism
an entire list might be changed with a single call.

The following example illustrates use of the "define$1ist"
and change calls described earlier. ··The example creates
a 1i st of ten i terns, and then fills in the pseudo-words
for the first two items on the list. The two items are
a command DCW and a literal DCW. The relationships between
the fields within the OCW's and their values are contained
in the COT tables for the adapter in question.

example: begin;

del list 1 bit (24), status_1 bit (36), status_2 •.
bit (36), device_index fixed bin (17), lgth f1xed bin
(12), indx fixed bin (12); ·

del 1 changes based (p),
2 op_type fixed bin (17)
2 nchanges fixed bin (17~,
2 change_array (n);

3 field fixed bin (17),
3 value fixed bin (24)~
3 address ptr;

MULTICS SYSTEM-PROGRAMMERS'· MANUAL SECTION BF .20.01 PAGE 10

lgth = 10;
ca 11 defi ne$1 i st
if status 1 than
n = 3· -

(list_l 1 device_index~ lgth 1 status_1);
go to error _1;

. " allocate changes set (pw_1);

pw_ 1 -> changes • op_type = 3;
pw_ 1 -> changes • nchanges = n;
pw_ 1 -> changes • change_array (1). field =
PN_ 1 -> changes • change_array (1). value =
pw_1 -> changes • change_array (2). field =
pw_ 1 -> changes • change_array (2). value =
pw_ 1 -> changes • change_array (3). field ==
pw_ 1 -> changes • change_array (3). value =

n = 2; allocate changes set (pw_2);

pw_2 -> changes • op_type = 5;

1 J
3~
" 2. ,

3· . I

3;
5;

pw 2 -> changes • nchanges = n;
PtC2 ->changes • Chi;mge_array (1). field= 3; ·
PW 2 -> changes • change_array (1). value= 2;
pw:2 -> changes • change_array (2). field = 5;
pw_2 -> changes • change_array (2). value= "1000010110"b;

index= 1;

call change$list (11st;_1, index 1 status_2, pw_1 1 pw_2);

if status_2 then go to error_2;
end example;

The important point of this example is to understand how
the ••changes" structures were developed. Space for the
first structure was allocated using the pointer pw_1,
and then the elements of this structure were gradually
filled in. In the first pseudo-word. three fields had
to be filled in, and each field was filled in with a preset
value from the CDT. In the second pse·udo-word (under
control of pw_2) one of the fields is set with a preset
value, and the other is filled with the literal 1026 (octal).

As the example shows, it would be quite laborious to program
the GIM in the manner used above. The main problem is
in generating the required change structures. To aid·
the DCM in creating these structures, an I/0 Command Translation
module has been designed. This module is described in
section BF.20.07 of the manual.

_TICS SYSTEM-PROGRAMMERS' f'A.ANUAL SECTION BF.20.01 PAGE 11

ActY.vation of a Pseudo List -.;..:;.;::.;;;.::...;;;.;.:.-::;..:-.:::o-,;:....:.;;;;;,;;;o,;....._...;:,;:;..,.._.

Now that the OCM has the ability to define lists and create
the entries within these lists, its next step will be
to activate these lists so that the device can start performing
the input-output operations specified by the lists. While
the list is active there will undoubtedly be interrupts
coming from the device to inform the user c;tbout the completion
of certain ~vents. Finally, when the I/0 activity has
been completed the DCM may want to release its pseudo-
lists so that it can create new or different ones. The
sequence of operations above is handled by three separate
calls to the GIM which are described below.

The activation of any channel can only be done through
the use of the connect$list call. A connect list (i.e.,
connect pseudo-list) differs from an ordinary pseudo-list
in two respects. First, it usually is composed only of
connect pseudo words, and consequently only op type· 2
is normally specified in creating the 1 ist. The list
is created in the same manner as a DCW list, but the connect
list itself is never activated or executed. A connect$list ·
call references one and only one item in the connect list,
and this item is then sent to the appropriate connect
channel. The format for a connect call is as follows:

connect$1ist (con_id, con_index, rtn_stat [,tra_id, tra_index])

del con id bit (24), /'" id and index of pseudo word ""/
con:index fixed bin (12), /•" •• containing channel command

word ,·~;

tra_id bit (24), /'" id and index at which
channe 1 '"I

tra index fixed bin (12), /* •• is to be started*/
rtn:stat bit (36); /* return status (from GIM) ,•r;

If the item being referenced in a connect call 'is not
being used to activate a list channel, then the tra id
and tra_index arguments are meaningless and can be Teft
out. Once a channel has been activated it will remain
so until a terminate status word is received from the
GIOC. .

Status Return Calls

While the channel is active there will probably be a steady
stream of interrupts coming from the GIOC to the Device
Interface Module. The incomin~ interrupt status words
are stored in a queue, and it 1s the responsibility of

fJ_:·_TICS svsT::M-PROGRAMMERS"' MANUAL SECTION FF .. 20.01 PAGE 12

the DCM to call the GIM and claim its status words. The
DIM is awakened for each interrupt that occurs, and if
it does not call for its status words before its status
queue overf1ows, they will be lost. Lost status words
normally represent a system malfunction. The exact manner
in which the status words are stored and processed is
described in Internal Structure of the GIM, BF.20.02.

The specification for the status call is

request$status (device_~ndex, current_status, rtn_stat
[..cur_stat])

del device_index fixed bin (17),
current_status bit (1),

rtn_stat bit (36);

de 1 1 cur _stat,
2 filled bit (1),

2 active bit (1),
2 status_waiting bit (1),

2 started bit (1),

2 int_id bit (24),
2 int_idx fixed bin (12),
2 tally fixed bin (12),

2 time bit (52) ,
2 stat length fixed bin (17),
2 statTstat~length) fixed

bin (24);

I* user device tag *I
I* ON if current status

i s des i red '"I
/''' GIM status word '"/

I';" ON if frame has data in ·
it •k/

I* ON if channel is active *I
I";'• ON if more status

waiting ·kf
I* ON if channel has been

star ted ,.,,
I'" lD of list."i"/
I* index of item in list */
I* current DCW tally, if

applicable *I ·
I* time of interrupt */
I* length of status array */

1·k breakdown of status "irj

If the user desires the current status of the GIM with
respect to his 1 i sts and device, the '' cu rrent_status''
switch must be ON ("1"b). If "current statusn is ONP
the first user-supplied status structure, "cur _stat" wi 11
be filled with current status. Other structures, if anyi
will be filled with waiting status words .. if any. If
one or more int_frame arguments are present, then the
intent of the call is to retrieve some status words from
the status queue buffers for the device in addition to
the above-mentioned information.

fv1Ui_TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20.01. PAGE 13

In the cur stat structure, the only element which might
need explanation is the status-waiting switch. This switch
is set whenever the status queue for the channel is non-empty.
When this condition is dete~ted, another status call to
the GIM should be made to retrieve more status words from
the buffer.

Each cur stat structure is a type of snapshot of the state
of the logical channel when the interrupt occurred. The
list id returns in int id, and the-index number returns
in int_idx. -

The important point to note here is that the time of the
generation of a status word and the time of servicing
an interrupt are not necessarily the same nor necessarily
close. It is possible, due to the asynchronous nature
of the GIOC, for the index to change substantially between
a status store and an inte.rrupt frame snapshot.

The array stat (''") in the interrupt frame is filled in
during the analysis of the raw status word. The fields
and values within those fields specified by edt (1) are
checked, and if a match is found, an element in stat (*)
is filled in with the corresponding status value.

As an example, consider a raw status word which has 8 .
bits of information, and is equal to "11l'01011"b. Suppose
also that · bits 1 ••• 8

field 1 = bits 1,2
fl value (1) = 00
fl value (2) =.01
fl value (3) = 10
fl value (4) = 11

field 2 =bits 3,8
f2 value (1) = 00
f2 v~lue (2) = 10

field 3 = 3,4,5,6,7
field action for f3
is literal substitution

Now, the procedure which processes this raw status word
first looks at field 1 and tries to ·find a match. It
does, and sets stat (1) = 4. The procedure then checks
field 2 and sets stat (2) = 0 because no match was found.
Finally, it takes the literal specified in field 3 and
sets stat (3) = "10101"b.

The only status word which has a special meaning to the
GIM is the terminate status condition. If the GIM sees
a terminate word go by, it makes a. note that the channel
is no lon~er active, it releases the space allotted ·for
the OCW l1sts, and then is ready to activate a new list
for that logical channel.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.01 PAGE 14

Re 1 ea,? i_r1g a L i sj:

Once the OCM has determined that a list is no longer necessary
it can release that list (or all its lists) by issuing
this ca 11

define$release (id, terminate_sw, rtn_stat)

del id bit (24),
terminate sw bit (1),
rtn_stat bit (36);

I* ID of list to be released *I
I* ON if releasing all lists *I
I''(GIM return status '':1

If the terminate switch is OFF.then only the one list
specified by id is released. If terminate sw is ON, then
all lists belonging to that logical channeT are released.
Also, all data areas associated with this device are released
and the Logical Channel Table is scrapped. In other words,
one terminates use of a device by calling the GIM at the
define$re1ease entry with "terminate sw' ON. Any id of
any defined list will suffice for total termination calls.

Global Changes and Copies of Lists

The GIM calls outlined in the above paragraphs are the
only calls absolutely necessary in the running of the
GIOC. The two following calls are provided for the con­
venience of the DCM.

change$global (id, indx~ lgth, mstructp, hilo, rtn_stat,
changesp L, changesp])

del id bit (24),
indx fixed bin (12),
lgth fixed bin (12),
mstructp ptr,
changesp ptr,
hilo bit (3)
rtn_stat bit (36);

I* id of list to be changed *I
I* starting index within id *I
I* length of block to be changed *I
I''(pointer to mask generator ·kf
I* pointer to change structures *I

I* return status (from GIM) *I

The argument ''mstructp'' points to a structure with the
same declaration as the "changes11 structure, and is used
to generate a pair of pseudo-words which will be used
in searching through the 1 ist specified by "id". One
of these words is generated in the same manner as any
other pseudo-word. The other pseudo-word is generated
by "or" ing together all of the field_masks specified in
"mstructp''. With this pair of words a mask-value search
is started at 1 ist '' id" location "indx", and \.11/hen a match
is made with some element in the list, then that element
is changed using the first changes structure~ and ~ach
succeeding element is changed according ~o the ootioral
ar9uments changesp_1~ changesp_2, etc.

!V;UL.TICS SYSTEM-PROGRAMMERS' MANUAL SECTION 8F.20.01 PAGE 15

With this type ,::>f search avai lab1e the user cim now use
six bits of the 84 bit pseudo-word as tags to flag certain
ocw~s for special attention.

When all changes are made, the search is resumed using
"mstruct". If another match occurs, the chan~es are repeated.
This process continues in the list until the 1tem with
the index of 11 indx + lgth-1" is searched. In no case
are any changes made beyond item (indx + lgth-1).

The call "change·$copy", specified be low, takes a contiguous
blockof pseudo words from locations '1 fidx" to '1 fidx +
fsize-1" in list "ficfl' and places them in list "tid" at
location '1 tidx'•,tidx+1,etc. If "tsize" is greater than
"fsize", a pseudo elementis added to effect a transfer
around the extra words. If "fsize" is greater than "tsize",
the call is in error. ·

change$copy (fid, fidx, fsize, hilo, rtn stat, tid, tidx,
tsize, [, tid, tidx, tsize]}

del fid bit (24),
fidx fixed bin (12)
fsize fixed bin (12),
hilo bit (3), .
rtn stat bit (36),
t i d-b i t (2 4) ..
tidx fixed bin (12)
tsize fixed bin (125 1

Summsrv

I* id of list from which to copy *I
I* index of block to be copied *I
I* size of block to be copied *I
I* return status (from GIM) *I
I''' id of 1 i st to be copied into '':I
I~' index of block to be modified *I
I,., size of b 1 ock to be modi f i ed ~.I

This paper has described all the calls necessary for running
the G IOC through the faci 1 it ies of the G IM. A summary
of the calls, data bases and status returns is contained
in BF.20.03 and BF.20~05. These calls can be used alon~ ..
or they can be used with the aid of the I/O Command Translator
(BF.20.07). Knowledge of which calls to make and at what
time requires a thorough knowledge of how to run a device
and what the contents of that device's class drivina table
are. The calls specified are flexible and allow th~ DCM
writer to use all the features of the GIOC without compromising
the security of the system.

