TO: MSPM Distribution

FROM: D. R, Widrig
SUBJECT: BF,20,10
DATE: 12/01/67

The revisions in this document correlate latest GIM changes,
Major changes have been made to the 'define$channel" calling
sequence and associated interface description, Minor
changes have also been made to several GIM data bases,
notably the LCT.



MULTICS SYSTEM~PROGRAMMERS ® MANUAL SECTION BF 20,1

(Supersedes:

Identification

GIM - Setup and Housekeeping
D. R, Widrig and S, D, Dunten

uirpose

This section is part 2 of the fomn’n e descripzion of
the GIM: see BF,202,02, :

Initial Device Setup - define$channe

In order to prepare the GIM to use a part cular device,

the DIM writer makes the following call:

call definefchannel (device_name, device_index, event_id

crin);

where the arguments are defined as follows:

device_name char (%) /% 4ndex oc device in DCT (See
BF,3,10) */
event_id bit (70) /% event channel ID %/
dev1ce index fixed bin(17) /* user device tag */
crtn bit (36) - /* standard GIM error return
wo”d s/

The intent of the define$channel ca’1 is to condition

the GIM to accept further calls necessary to operate the

indicated device in any manner the DIM writer sees fit,
Upon receiving the define$channel call from a DIM, the
GIM sets up the most important housekeeping mechanism
for this device, the Logical Channel Table,

The Logical Channel Table (LCT) is a per-device structured

segment containing all information relating to a DIM’s

lists, hardware channel status, Class Driving Tables allowed,

GIOC to be used, etc. It has the following per-device
declaration:

/* Declarations for the Logical Channel Table */

dcl 1 lct based(p), /* logical channel table */
2 cdt ptr, /* ptr to Class Driving Table */

2 cdtnl(3 /* n_cdt_names

*/ ) char(32) /* 1ist of good CDT names */



MULTICS SYSTEM-PROGRAMMERS® MANUAL

dcl

2
2
2

giocne fixed b:n(17),
phychn fixed bin(? ),
conno fixed bir(17),
statmap (i), bit (3 )
stlpw bit(72),
dir_chan bit(1),
fststat bit(18),
Tststat b;t(18,,
copid fixed bin(12)
copidx fixed b1n(125
copbtc fixed bin(18),
spare fixed bin(17),
aux(2),

3 auxid fixed bin(12)
3 auxidx fixed bin(12),
3 auxend fixed bin(12),
2 auxcpd bit(1),

3 late bit(1),
nlst fixed b1n(12)

1st (10 /* max__
ptr,
free area((14336))

max_lists fixed bin(17)
ext” static;

lists */ )

/* tota1 al]owable lists per

LCT */

The GIM”s initial task upon receiving the deFlne$channeI
call is to establish a Logical Channel Table (LCT) for
the indicated device by appendlng a branch for the LCT

in the GIM’s directory, ">io",
is formed by concatenating the device index,

The name of the branch

(converted to a character strlng) with a secondary name

of "

.lct" .

The device index is found by inspection of

"device_index",

the entry in the Device Configuration Table (DCT) corresponding

to "device_name' ,

the above re1at10nship
EXAMPLE

Suppose that the first entry in the system-wide Device
Configuration Table (DCT) indicated that:

dctp dct.desc(1).device_index = 3308

and

dctp dct.desc(1),dev_nam = "my_device"

A call to check$dev1ce name will supply

SECTICN BF,20.10 PAGE 2
/% GIOC identification number */
/% physical channel number/2 */
/* connect channel numher */
/* physical stat ctannel map */
/* saved LPW for status checks */
/% ON if direct channel */
/% offset of first status frame %/
/% offset of last status frame */
/* 1d of latest data move */
/* index of latest data move */
/¥ number of bits moved ¥/
/% array of auxitiary list info */
/* id and index for which an */
/% ,.auxiliary list is
: maintained */
/% first index not covered by
patch ¥/
/* "1"b if auxiliary list is
copied */
/% on if patch not taken %
/% total number of operatian
Tists */
/* list status ptr array */
/% free storage area */



MULTICS SYSTEM=PROGRAMMERS” MANUAL  SECTION 27,.20,1C PAGE 3

Then a call to qu ine$channel with device_name = "my_device"
would result in the establishing of a segment named " 3303, lct!
in the directory "root>system_ root>io,

The segment so established Is Daceable and has the READ,
WRITE, and APPENI attributes, Errors in establishing’

the segment 1ncssdo illega? DCT index, "badcall", and

segment has a! mcdy been established, "haofeq“. Error

bits are set in the standard manner as described in BF,20,05,
Errors Detected hv the GIQC Interface Mocdule, Assuming

no errors in estaeblishing the LCT, the GIM continues by
initializing device dependent material within the LCT.

Using entries found within the Device Configuration Table
(DCT) for this device, the GIM copies the following data
into appropriate areas within the LCT:

a) List of.al?owab!e CDT names for this device
b) GIOC number of this‘dévice

c) GIM channel! number for this device. The GIM
channel number of a particular device is always
half the physical channel number of the list
channel for that device, This is because the GIM
treats the data and list channel for a device as
a single "channel”,

d) The symbolic connect channel number to be used
when issuing connects to this device.

e) The status channe] mapping for this device, Status
channel mapping is exp1ained in the later sectlon
entitled Generation of DCW°s.

After copying in the above data, the GIM indicates that
no Class Driving Table (CDT) has been selected yvet, The
entry "lct,cdt" is set to null indicating no valid CDT
exists,

Upon comp1et10n of the above tasks, the GIM has initialized
the major bookkeeping segment, the’ LCT, for a particular
device attached to the Multics configuratlon



MULTICS SYSTEM-PROGRLMMERS'.MANUAL SECTICON BF 20,10 PAGE 4

Selecting a Class Driving Table - define$class

After a device has been established vi he define$channel
call, the DIM must further set up the logical channz]
table (LCT). The DIM makes the following call:
a

]
vt

call define$class (device_index, class_id, rtnc);

where the arguments are declared as follows:

device_index fixed bin (17) /* user device tag */
class_1id char (%) " /% primary name of Class
Criving Table */
rtnc bit (36) : . /* standard GIM error return
o word */ o

In the same manner outlined in the define$channel call,
~define$class again seeks out the pointer to the LCT associated
ith the device indicated by '"device_index'", The call

to the file system entiry "estbiseg" should return with

an error indicating the LCT segment is already established,
(If this is pnot the case, then the DIM did pot precede

the call to define$class with the call to set up the LCT,
define$channel, The GIM sets the error "lctnf'" to indicate
that the LCT was not found,)

Having verified the LCT, a check is made to insure that

a Class Driving Table (CDT) has not already been assigned
via a previous call to define$class, If the CDT pointer,
"lct_cdt", is not null, a previous call was successfully
made and error 'badseq" is set indicating this call is

out of sequence, Assuming that the CDT was not previously
assigned, define$class proceeds by calling the traffic
controller entry "dstm$get_route" (See MSPM BQ.6,07) to
get the relationship tetween the user device tag, '"device_index",
and the logical channel number, a GIM bookkeeping number,
Illegal device indices result in the error "baddev'" being
set, Both the LCT segment number and ''device_index" are
stored in the appropriate logical channel slot in the
Channel Assignment Table (CAT) for future reference,

The logical channel number is stored in the CAT slot for
the proper GIOC -and physical channel to facilitate the
relating of interrupts on a particular channel and GIOC

to a certain logical channel,

Having entefed the necessary bookwork into the CAT, define$class
proceeds by matching the offered CDT name, 'class_id", -
against the 1ist of allowable names contained within the



MULTICS SYSTEM=-PROGRAMMERS® MANUA' SECTION EF,20,10 PAGE 5

LCT, 1If "class_id"' does not match any name, the error
vedivol! is set ‘indicating = COT violation, Assuming

a match, a smail amount of LCT housekeno;no is performed,
Spe:ifica?!v, "ict,fFststat", "lct,lststat", and "lct stlud‘
are zeroecd, Al! the DoAnters to *he list aroa are set

to null, Finally, the list area is initialized for subsequent
allocations,

A search in the GIM’s directory for the indicated CDT

is now macde, Tha CDT is established by conca*enatln?
"class_id" with a secondary name of " ,cdt" and establishing
this segment in the GIM hierarchy branch via a call to

the file system entry estblseg, A successful establishment
of the CDT segment stores the pointer to the segment in
"lct_cdt”, Failure to establish the segment results in

the error "cdtnf" being set indicating the CDT was not
found, Note that several definef$class calls may be done
until a proper CDT is established,

Upon successful completion of the define$class call, the
DIM has comoleted the mandatory sequence of calls necessarv
to use a partlcular device, From this point on, the user
may make the remaining GIM calls in essential?y any order
or number,



MULTICS SYSTEM-PROGRAMMERS? MANUAL  SECTION B7,20.10  PAGE 6

Defining a List - define$list

Having previously set up a device for use via the define$channel
and define$class call, the DIM is now free to create,

edit, and delete any reasonable number of I/0 requests

to the GIM, To assist the DIM writer in his operations,

it will be found convenient to group his requests into

certain user-cdefined areas, For instance, the DIM writer
might see fit to think of the I1/0 necessary ta turn on

a 1050 proceed light as a single logical opera%tion composed

of several GIOC instructions, To assist the DIM writer

in organizing his concepts, the GIM reguires that the

writer define lists, These lists may be of any reasonable
number and length, Most of the 1/0 requests to the GIM
center around the notion of creation and editing of items
within a list, Thus a DIM writer may see fit to define

a list which is %o contain the necessary items for turning

a 1050 proceed light on, Whenever he wishes tc turn the

light on, he ther: instructs the GIM to perform the operations
within that list, We shall discuss the editing and actjivation
of lists in the following sections; at issue here is the

1ist definition,

The DIM creates a list via the following call:
call define$list (id, device_index, lgth, 1rtn);
where the arguments are defined as follows:

device_index fixed bin (17) /* user device tag */

id bit” (24) - = /* 1ist ID returned to user */
1gth fixed bin (12) " /% maximum number of items

in list %/
Trtn bit (36) /* standard error return word */

Define$list proceeds by verifying the user device tag, )
"device_index", by calling checkddevice_index, If '"device_index"
is valid, check$device_index returns with the Jogical

channel number and a pointer to-the proper LCT. An illegal
"device_index" will return with error "baddev" set, Similarly,
if the LCT has not been completely established via a call

to define$class, the error "lctnf" will be set, Assuming

no problems, define$list tries to establish a new user

list via a call to change$dfl, the main list allocator,
Possible errors include only the case of no more list

space available for definitions, This causes the setting

of error "tmlst", Assuming success in the list definition,
the list ID is fabricated, The list ID may be viewed



MULTICS SYSTEM-FROGRAMMERS® MANUAL  SECTION BF,20.10 PAGE 7

1

as a kind of "laundry ticket" which the DIM must keep

and present whenaver reference to that particular list

is made, It is the only key tc a given list and, if lost
or destroyed, will have the effect of removing a list
from the DIM“s manipulation, The "ticket" may be restored
via a call to "reguest$lists", BF,20,12,

Note that the list may still be used by the GIM, it simply
cannot be altered by the DIM if the DIM destrovs the ticket,
1t id” .

The list identification ticket, "id", is formed by concatenating
the 12-bit logical channel number with the 12-bit list

number, The list number is nothing more than the index

of the slot for the indicated list within the LCT,

After generating the list ticket, "id", define$list is
finished, The DIM is now free to edit and use the list
defined by "id" subject to the limits of the list length
and restrictions contained within the Class Driving Table
pointed at by the LCT entry, "lct,cdt",



MULTICS SYSTEM-PROGRAMMERS' MANUAL  SECTION BF,20,1C  PAGE §

Releasing a_Lis: - define$release

Occasionally, a DIM writer may discover that after certain
setup stages have been passed, certain lists are no longer
neeced, When a list is no longer needed, it is to the

DIM writer”s advantage to be able to telil the GIM to release .
the list and free up space for other list manipulations,
Also, one would like to have a general cleanup mechanism
so that the releasing of a device (e,g, when a console
user logs out) is accompanied by a general cleanup of

the GIM file hierarchy, etc, To release a list or to
de~assign a device, the DIM makes the following call to
the GIM: ‘

call define$release (id, terminate, rrtn);

where the arguments are declared as follows:

id bit (24) _ /* list identification ticket */
terminate bit (1) /* ON if de-assigning device */
rrtn bit (36) /* standard error return word */

The GIM entry deFine$release validates the list laundry
ticket, "id", by calliing check$list, The checking routine
verifies the 1is%t id and separates out the list number

and logical channel number, The logical channel number

is used as the index into the Channe! Assignment Table

(CAT) to get the pointer to the Logical Channel Table

(LCT)., Possible errors in the check$list call include

an illegal ID, "badid", or LCT not found, '"lctnf", Upon
successful return from check$list, define$release continues,

If the termination switch, "terminate", is ON, the GIM
recuires all channel activity for this channel to be stopped,
A call to lpw$safe will shut down the channel and condition
it so that it cannot be accidentally restarted, The technique
employed in stopping a channel was discussed in an earlier
section, GIOC Channel Activity, Possible errors from
Ipw$safe wi e i1gnored here although the error bits

may be set, These error return bits include illegal GIQC
number, '"badcall", and GIOC not available, "giocnf",

The motivation for ignoring the errors (if any) stems

from the supposition that one terminates a device only

on close-out or de-assignment and shutdown errors are

of no consequence, If the DIM indicated termination, any

list id from any previous define$list call is adequate,

If the DIM indicated termination, the bounds of a '"release
loop" are set to encompass all possible lists contained
within the DIM”s LCT, 1If only one list is indicated,
the bounds are so adjusted,

£



MULTICS SYSTEM=~FPROGRAMMERS® MANUAL SECTION BF 20,10 PAGE ©

The "release loop"' is then entered, A list entry is selected,
If the 1ist is not defined, (that is, the pointer to the

list is null), the "release loop" is skipped and a new

list selected, ~or a defined tlist, the following action
occurs,

For a defined list, the pointer to the DCW space, "lst, dcw",
is checked, A nul! pointer, indicating nc DCWs allocated,
causes a skip over the DCW releasing mechanism, For non=null
pointers, DCW space has been allocated and there exists

a possibility that the DCWs are actually being used,

A call to Tpwlactive will confirm or deny the list activity,
If the 1ist is active, chaos could result if the DCW area ,
were to be released so the GIM returns an error bit, "lstact",
indicating the list is active, If the list is not active,
a call is made to mkdcw$free to release DCW areas and

any associated data areas associated with transmission
to/from the wired-down data area, '"data_seg", .

The address space existence is verified by checking the
address space pointer, "lst,adrlist", If there exists"

an address space (i e, "lst.adrlst" is non-null) the space
is freed up,

Finally, the List Status Table itself is freed, One pass

of the "release loop'" is now completed and subsequent

passes (if any) will select and release other lists.

The released list may later be re-established by a define$list
call, but interim editing or manipulation calls will be
rejected with the error for a list not defined, " lIndef",

After completing the "release loop" the "terminate" switch

is again tested, If the switch is CN, the GIM now eliminates
the entire Logical Channel Table by a call to the file

system entries makeunknown and delentry, After the two

file system calls, the DIM user may no longer reference

thg device until a subsequent call to define$channel is

made.





