
TOz
FROM:
SUBJECT:
DATE z

MSPM Distribution
D. L. Stone
BF.6.01
06/21/68

The attached copy of BF.6.01 represents the current state
of the Tape DSM implementation. More detailed information
and source files may be obtained from me.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF. 6. 01 PAGE 1

Published: 06/21/68

Identification

Standard Tape DSM
Harlow Frick

Purpose

Operating in the user's working process# the tape DSM
(Device Strategy Module) interfaces on one side with l/0
system Requests from the user directed to magnetic tapeJ
and on the other side with the tape DCM in the magnetic
tape device manager process. There is also communication
with the operator's process by means of requests made
to the media request manager module.

Restrictions

The tape DSM currently contains the following restrictions:

1. All tapes are written in the Multics standard magnetic
tape format.

2.

3.

4.

Tapes to be read must have been written in Multics
standard magnetic tape format.

The tape DSM will operate equally well with 7 or 9
track tapes and with either 800 or 556 BPI tapes. However#
tape density is set by default to 800 BPI in tape registry
files# thereby restricting users to 800 BPI. Also#
it is the responsibility of the attachment module
(BF.2.23) to insure that the tape reel is attached to
a 7 or 9 track handler as required.

Ionames are unconditionally assigned default attributes
as defined in BF. 1.02 and elsewhere. For convenience
they are listed below.

Access mode is forward only.
Data mode is logical# linear.
Use mode is readable# rewritable# appendable.
Write synchronization mode is asynchronous.
Read synchronization mode is asynchronous.
Workspace synchronization mode is synchronous.
Read ahead and write behind limits are constants

which are not adjustable by the user.
Element size is a constant which is not adJustable

by the user. It is currently set at ~6 bits.
The following two. restrictions on element
size are imposed by current implementation.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .6.01 PAGE 2

a) Element size is assumed less than 37 bits in the
tape_dsm detach procedure when filling a partial
buffer wTth padding. This is an easily removed
restrict ion.

b) Element size must not be a value which can cause
an element to be split between two physical
records (e.g., 8 bits or 3 words). It is uncertain
whether it is worth while to remove this
restriction.

5. No consideration is given to the. insertion or removal of
write rin~s. Information as to whether the write ring is
inserted 1s, however, contained in the 144 bit status
string returned to the user when return is made from the
attach call.

6. Only the following calls will be recognized by the tape DSM:

attach
detach
read
write
seek
upstate
restart

Tape Registry Files

In order for a tape ree 1 to be accessible to a user it
must be described in a tape registry file. A tape reel
is one of three general types, depending on the restriction code
in i t s reg i s t ry f i 1 e • -

If the restriction_code is 0, the registry file is for
an ordinary standard Multics tape. Ordinary standard
Multics tapes are th€: only type available to ordinary
users, and each has a tape registry file unique to that
tape ree 1.

If the restriction code is 1, the registry file allows
the user to have read and write access to whatever labeled
standard Multics tape the operator mounts. The number
of users able to specify tape registry files with a
restriction_code of 1, will be extremely limited. For
a tape reel attached with a restriction_code of 1, the
tracks and density parameters in the registry file still
apply, but prev_reel, next_reel, and reel_name have no
meaning.

If the restriction code is 2, physical mode is allowed
(but not required): No kind of label check is performed
by the DSM. There are no plans to allow this restriction_code
initially.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF. 6.01 PAGE 3

Initially registrt files may be fixed since the command
to add or change tape registry files may not be implemented.

Each tape registry file has a data area containing profile
information for the physical tape associated with that
registry file. This data area is defined with the following
declaration:

de 1 1
2
2
2

tape_profile based (profile_ptr),
tracks fixed bin, /*number of tracks(7 or 9)*/
density fixed bin, /*density(556 or 800)*/ ·
current_length fixed bin,

/*number of data bits currently
written on tape, exclusive of
administrative data*/

2 restriction_code fixed bin,
/*O=standard multics format,

perform standard label check
1=standard mu 1 tics format,
perform label check by verify­
ing only that some valid label
exists.

2 prev_reel char(32),

2 next_reel char(32),

2 reel_name char(32);

Transaction 61ock Qis,Jpline

2=physica1 mode, don't perform
any label check*/

/*registry file name of previous
reel if in a multireel sequence.
If a null string this is the
first ree 1 • *I

/*registry file name of next reel
if in a multireel sequence. If
a null string this is the last
ree 1. *I

/*if only 1 ree 1, both prev_ree 1
and next_reel must be blank
character strings.*/

/*character string used to
locate and visually identify
this ree 1 */

Notes This section assumes the reader is familiar with
MSPM Section BF.2.20.

A buffer tb is allocated and attached to the end of the
buffer tb main chain for every tape operation. If the
tape operation is a read or write a buffer tbe is attached
to the buffer tb. The tbe contains the following information:

MULTICS SYSTEM-PROGRAt~MERS"' MANUAL SECTION BF.6.01 PAGE 4

1. The physical data transferred to/from the tape.

2. A count of the number of elements transferred, which is set
by the DCM.

3. A code indicatin~~ whether data is for a write call or read
call and whether the data read has been verified.

When the user makes a write call, each buffer tb for data
associated with the write call is chained in a down chain
from the users call. This is necessary since status changes
may, and normally do, occur for the users write call after
return from the call. The dsm updates the user"'s call
status from buffer tb status in buffer tb"'s in the down
chain from the users write call tb.

When the user makes a read call no down chain is attached
to his call tb because his final status is returned to
him by processing the. buffer tb main chain before returning.

Per I9name Base Extensi9n Data

The following declaration is for the per_ioname base extension
table used by the ta~~ DSM. (The per_ioname base extension
is described in BF.2.20).

del 1 pibe based(pibep),
2 re lp, ·

3 next bit (18),
3 last bit(18),

2 read_out fixed bin,
2 write out fixed bin,
2 nout fixed bin,

/*relp to next pibe*/
/*relp to last item in this

structure*/
/*read ahead limit in records*/
/*write behind limit in records*/
/*current read_ahead/write_behind

in records*/
2 buffer_position fixed bin,

/*offset within buffer.data of next
element to be filled~"'/

2 physical_positlon fixed bin,
/*next physical record number to be

transmitted to/from*/
2 current buffer bit(18),/*index of current buffer tb*/
2 bufp bit(18){ /*relp for current buffer tbe*/
2 event bit(70J, /*event for communication with

device manager process*/
2 id bit(36), /*id of process which may use above

2 wf_written bit(52),
event channel*/

/*when the user issues the first
read operation record no. 1 is
unconditionally read and the time
when it was written is stored
here1 for records to be accepted
they must have been written
later than this time*/

MULTICS SYSTEM-PF:OGRAMMERS' MANUAL SECTION Bf.6.01 PAGE 5

2 read_status bit(144), /*if currently reading, the
status of the last read call
is stored here*/

2 brr_count fixed bin, /*incremented when a bad record
is read, reset when a good
record is read*/

2 rt_count f=ixed bin, /*incremented when a too large
record number is read if
brr _count ""= 0; reset when a
required record number is read
without er·rors*/

2 wc_flag flxed bin(1), /'*Wait for completion flag; if
set, upstate wait for success­
ful completion of all transac­
tions before returning*/

2 read_flag fixed bin(1),/*current mode is reading if set*/
2 write_fla~J fixed bin(1);

/*current mode is writing if set*/

1:1a rdwa re Errors

Write operations to write data records which terminate
with parity or transfer timing error are not reflected
to the user unless the error persists for 10 attempts
to write the same record. Instead they are re-initiated,
without first bac..:kspacing, per the write error recovery
philosophy specified in BB.3.01. Parity or transfer timing
errors on write operations to write eof records are ignored,
however, in order· to avoid the problem of backspacing
over multiple eof records generated by parity or transfer
timing errors when written.

Read operations which terminate with parity or transfer
timing errors cause the following physical record to be
read, in hope that an error occurred when the tape was
written, that it was re-written, and the next record will
therefore contain a good copy. If a good copy of the
required record number is not found before locating larger
numbered record or end of file, the tape is backspaced
until a smaller numbered record is passed over, and then
the operation is repeated. If this entire procedure is
unsuccessfu 1 in '!0 tries, unreadable data status is returned
to the user. Program operation upon detection of read
parity or transfer timing errors is detailed in the description
of the !search procedure. When unreadable data status
must be returned to the user, the DSM abandons reading
elements beyond those in the first encountered unreadable
record.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.6.01 PAGE 6

The user may skip over unreadable data as follows:

1. First, process the good data (nelemt elements were
transferred without error).

2. Calculate an offset to be added to the read_pointer.

offset = nelemt + (9216/elsize)

3. Call seek in order to add offset to the read_pointer.

4. The result of adding the offset to the read_pointer sets the
read_pointer to point at the first element of the next
record number after the unreadable one. Therefore, a read
call can now be executed to read starting with the first
record after the unreadable one.

All hardware errors other than parity and transfer timing
are considered fatal and are simply returned to the user
in his status string.

Status String Fonnat

The following bit assignment has been defined in addition
to the definitions in BF.1.21. If bit 6 is set (serious
or fatal error) then the following bits contain valid
in format ion.

!U.ll
28-30

31-36

109-114

115-120

Meaning

1 = write operation

3 = order operation

4 = read operation

If bits 28-30 = 3 then this field indicates the
order code as listed in BF.6.02.

Major status

Sub status

Tape OSM Procedures

The tape dsm consists of 3 levels of procedures. The
first level is the access segment which in the current
implementation simply transfers to one of the following
second level procedur-es:

-

MULTICS SYSTEM-PROGRAMMERS"' MANUAL

tape_dsm_attach
tape_dsm_detach
tape_dsm_read
tape_ds.m_wri te
tape_dsm_seek
tape_dsm_upstate

SECTION BF.6.01 PAGE 7

The above procedures then make calls to the following
group of auxi llary, or third leve 1, procedures:

tape_d~:.m_f read
tape_d~:.m_i search
tape_dsm_bread
tape_ds.m_order
tape_dsm_misc
tape_dsm_status_handler
tape_dsm_bseek

The remaining portions of this document describe the above
1 is ted procedures.

Tape_dsm_attach

This procedure i~:; entered when the user calls tape dsm$attach.
Its purpose is to perform attach processing in order that
subsequent read/v·Jri te ca 11 s may be processed for the ioname
being attached.

Upon receipt of an attach call, tape_dsm_attach does the
following:

1. Initializes information in the per_ioname base table.

2. Calls attm$attach which performs standard attach process­
ing as described in BF.2.23.

3. Calls ecm$create_ev_chn and ecm$give_access in order
to establish interprocess communication with the media
request module.

4. Calls mrm$put_request in order to initiate an operator
request to mount the required tape ree 1, and waits
Ul~ti 1 the n:~qui red tape is mounted. (Described in
BT.2.01).

5. Allocates and initializes the per-ioname base extension
table.

6. Sets tape d<.msity to 800 or 556 BPI according to the
density spe<:.:ified in the tape registry file.

MULTICS SYSTEM-PROGRAHMERS"' MANUAL SECTION 8F.6.01 PAGE 8

7. Performs a label check per the following simplified steps.

a. tall fread in order to fetch record #0. If not
blank tape status., go to c; else., go to b.

b. Rewind; write taPe label; write eof; rewind; go to a.

c. If tape label not equal to label in tape registry file.,
error return.

d. Forward space file.

8. Return.

Tape_dsm_detach

This procedure is entered when the user calls tape_dsm$detach.
Upon receipt of a detach call tape_dsm_detach does the
following:

1. Finishes tape 1/0 operations as follows:

a. If the current operation mode is not writing., go to d.

b. If there is a partial buffer., fill remaining buffer
positions with "padding" and write the record.

c. Write an end-of-reel sequence (consists of: EOF., EOR
record., EOF., EOF; as specified in 88.2.01).

d. Rewind and dismount.

e. Wait until rewind is complete.

2. Calls mrm$put_request in order to initiate an operator
request to return the tape reel to its permanent storage
area.

3. Calls ecm$delet_ev_chn in order to destroy the operator
communication event channel.

4. Calls attm$detach in which performs standard detach
processing as described in 8F.2.23.

5. Calls atm$delete_ioname with the delayed bit on.

6. Returns.

MULTICS SYSTEM-PROGRAMMERS"' MO.NUAL SECTION BF.6.01 PAGE 9

Tape_dsm_wri te

This procedure h, entered when the user calls tape dsm$write.
Its function is to transfer the user's data to physical
record blocks, initiate write operations as physical record
blocks (buffer tbe""s) are filled, and then return to the
user after calling tape_dsm_upstate which proce~ses any
terminations which have occurred, and waits unt1l wri tebehind
is within limits., This procedure also initiates writing
eof records after each 128th record.

Tape_dsm_read

This procedure is entered when the user calls tape_dsm$read.
Its function is to transfer data from physical record
blocks (buffer tbe""s) to the area specified by the user.
If the required data is not in a physical record block,
the fread procedure is called in order to get it. Also,
this procedure initiates allowable read ahead before returning
to the user.

Tape_dsm_seek

This procedure is entered when the user calls tape_dsm$seek.
After an attach call the user's read pointer is set to
the first element on the tape, and his write pointer is
set to the last element on the tape plus one. Also, the
tape is physical'ly positioned in front of the first data
record.

The seek ca 11 a l'lows the user to change the read or write
pointers. It does not initiate any physical tape movement.
Physical tape movement is initiated only by a read or
write call.

Tape_dsm_bseek

When a read or write call arrives, a check is made to
see if the tape is correctly positioned relative to the
read or write po.inter. If not, the tape is physically
re-positioned as req~ired by calling the bseek procedure.
Or, more precisely, this procedure is called by tape_dsm_
write/tape_dsm n~ad if the write/read pointer does not
point to the eTement which wi 11 be written/read next.
Its function is to cause the physical tape position and
dsm transaction block status to be changed such that the
next element transferred to/from tape will be specified
by the write/read pointer. In some cases it is necessary
to read tape in the process of executing write calls in
order to properly position tape and/or partially fi 11

MULTICS SYSTEM-PROGRA'1MERS' MANUAL SECTION BF.6.01 PAGE 10

a write buffer. For example, if a user initiates writing
at some point other than the beginning of tape, it is
required to first read the tape in order to properly position
it. If the user issu,es a seek to an element in the middle
of a record, followed by a write, the tape must be re-positioned
in front of the record containing the first element to
be written, the unchanged part of the record must be read
into the current writ,e buffer, and the tape must be backspaced.
It should be noted th.~t this same strategy must be employed
when the user starts ''JIIri ting at the end of a tape if the
last data record on the tape had padding in it. All actual
searching and reading operations will be performed by
calling Fread procedure.

The bseek procedure is not yet implemented, or completely
flowcharted, since it is not initially required. This
causes the following restrictions:

1. Tapes must always be written starting at the beginning.

2. Tapes must be sequentially read starting at the beginning.

3. After writing a tape, the user must detach and attach
before reading.

Tape_dsm_upstate

This procedure performs transaction block discipline,
sets the 144 bit status string in the call sequence and
then returns. If the current operational mode is reading,
transaction block discipline is performed by calling fread.
Fread will never initiate any read operations when called
from upstate because it is called with the count argument= 0.

If current operational mode is writing, transaction block
discipline is updated directly in this procedure. Recoverable
write errors (i.e., parity or transfer timing error) are
processed by upstate by re-issuing the write operation.

The upstate procedure is entered in one of the following ways:

1 •

2.

3.

4.

User calls tape_dsm$upstate.

Tape dsm_attach calls tape_dsm_upstate after writing a
labeT record.

Tape_dsm_wri te always ca 11 s tape_dsm_upstate before
returning to the user.

Tape_dsm_detach calls tape_dsm_upstate at detach time,
if current mode is writing.

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF. 6. 01 PAGE 11

Restart Operatior~

The restart outer ca 11 is initiated by the overseer in
order to restart I/0 operations subsequent to a quit.
It is implemented in the DSM by a call to the upstate
procedure. At the time of this call it is likely that
in progress 1/0 transactions were previously aborted by
consequence of the user pressing his quit button. The
upstate procedure, among other things, restarts 1/0 operations
which were previously aborted.

Frfiad

This procedure is called in order to place verified data
into buffers and set in status. If count = 0, no attempt
is made to place any verified data in buffers but in_status
is set to the status of the last read operation. If count
> 0., then count sequential verified data records are placed
in adjacent buffer tbs, starting with the record number
specified in physical_position {physical_position is maintained
i n the pi be) •

Tape_dsm_isearch

This procedure issues a series of tape move operations
followed by a read operation, waits for completion of
the read operatic:>n if the wait flag in the call sequence
is set, and then returns to the caller. This procedure
is called by the fread procedure whenever a record number
other than the one required is read.

Searching strate~:Jy is designed to be reasonably efficient
for any repositioning action. The following operational
steps illustrate the sequence in which logical situations
are handled.

1. If the tiipe must be positioned more than 3/4 of the
way back to the beginning from its present position,
a rewind and forward search is initiated.

2. If the required record has eof (end of file) records
between it and the current position, forward or back­
space file commands are issued until no eof records
intervene.

3. If the required record is forward on the tape and if
the distanc,,:! back from the next eof record is less than
1/2 the distance forward to the record, then a forward
space file, backspace file (to backup over the eof
record just forward spaced over) and a seri,~s of back­
spaces records are issued instead of issuing forward

MULTICS SYSTEM-PROGRP.MMERS' ML\NUAL SECTION BF .6.01 PAGE 12

space records. This strategy is applied because it reduces
the number of cc.,mmands sent to the dcm by at least 50%.
The same strate~JY is appl led when searching for records
backward on the tape.

Dupl icgte record numt:~ may occur on the tape because
when the tape is written, parity errors on write operations
result in re-writing the same record until it is written
without error, or until the record is written unsuccessfully
10 times. Duplicate record numbers can foil the attempt
to read the required record number on the first attempt
after positioning. However, if this occurs the fread
procedure will discover that it has the wrong record number
and call !search a sE::cond time.

It is possible, but highly unlikely that !search wi 11
not initiate reading the required record number when called
a second time. However, Fread will. persist and call !search
until the required rE.:cord is finally read. Even if every
record is duplicated a variable number of times, !search
will eventually find the correct record.

T.be effect of previol0S 1 y 1 nit !a ted reed ahead is taken
care of by lnitlatinq re-position commands only after
waiting for all prevlously initiated commands to terminate
and checking each re~~d ahead record to determine whether
it is the required re::cord number. The waiting and checking
is done in the fread procedure before calling the !search
procedure to initiate: re-positioning operations.

Limits have been placed on the number of tape operations
which will be initiated upon a single call to the isearch
procedure for the following reasons:

1 •

2.

It is not currently known if there is a maximum practical
number of calls which the request queuer should queue.

The probability of correct positioning decreases as the
number of positi.oning operations increases, and it
therefore seems advisable to check the actual tape position
occasionally whE.:n searching for a record.

Lim! ts in the isearct·t procedure are currently set to a
maximum of 10 forward or backspace files, when skipping
past eof records, and a maximum of 20 forward or backspace
records.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BF .6.01 PAGE 13

The maximum numbE·r of operations initiated by one call
to the isearch procedure is 34 as illustrated by the
following examplE·:·

ap = 8192 actual position

nrp = 1369 next required position

rewind sets ap = 0

forward space 10 files sets ap = 1280

forward space 1 file sets ap = 1408

backspace 1 file sets ap = 1408

backspace 20 records sets ap = 1388

read 1 record (reads record #1389)

Parity errors wi "'(1. per current implementation. usually
result in the following action:

1 •

2.

3.

4.

s.

6.

7.

B.

Fread reads the required record with a parity error.

Fread increments brr count to one and reads the next
record. -

Since the next record is not the required one. Fread
calls isearch.

!search backspaces 3 records (2 to reposition in front
of what wou1d be the required record if there were no
duplica"!;es + brr_count. which is 1 in this example).

!search initiates a read operation. waits for completion.
and returns,

Fread determines that the record read is not the required
record number and so calls isearch a second time.

I search ini ::fates a read operation. waits for completion.
and returns (no repositioning is required because the
required record number is next on the tape).

If no parity error occurs. fread accepts the record
after makinq header and trailer data checks. If a
parity erro1'" occurs on this second attempt, the retry
procedure L; repeated by continuing at step 2. After
the 10th at~empt fread gives up and return is made to
the user wi :h the fata 1 error bit set and with hardware
status ston~d in status returned to the user o

MUL TICS SYSTEM- PROGR/J.MMERS ... MC\NUA L SECTION BF .6.01 PAGE 14

Tape_dsm_b read

This procedure initistes a read call to the dcm after
performing. tb and tbe a 11 ocat ion and chaining. A 1 so.
it waits for physical completion before returning if the
wait_flag is set. The tbx argument in the call sequence
is set to the buffer tb index of the read call.

Tape_dsm_order

This procedure initiates an order call to the dcm after
allocating and chaining a buffer tb. Also. it waits for
physical completion before returning if the wait flag
in the call sequence is set. The tbx argument in the
call sequence is set to the buffer tb index of the order
call. The op argument in the call sequence is the operation
code of the order call as listed in BF.6.02.

Tape_dsm_m i sc

This procedure contains the following entries:

1 • Get_event - The purpose of this entry is to return as
a return argument an event code which may be used by the
tape dsm when ca 11 ing the request queuer. The tape dsm
may run in more than one process. An event code contains
the process id of the process to be awakened. This
procedure returns an event code which applies to the
process currently running by comparing the process id
of the current process to the process id part of the event
which was returned the last time get_event was called.
If equal, the same event is returned; if different a new
event channel is created and the new event code is returned.
This code shoulc probably be placed in line or else
another standarc: version of it should be called.

2. Order- This entry is no longer used. It should be deleted.

3. Error- This entry is called upon detection of status
errors. It should be deleted when the standard error
handler is implemented.

Tape_dsm_status_hand1er

This procedure is called when the DSM discovers status
on an I/O transaction which it cannot handle. Tbx is
the buffer tb containing the unrecoverable fatal error
status. The following operations are performed:

MULTICS SYSTEM-PROGRAMi'4ERS' MANUAL SECTION BF .6.01 PAGE 15

1. Status in the buffer tb is moved to in_status.

2. The fo 11 owing addi tiona 1 information about the I /0
transaction is placed in in_status.

bits 28 - 30

bits 31 - 36

1 =write

3 = order

4 = read

If an order call 1 these bits contain
the order code as defined in
BF. 6. 02.

3. The buffer tb chain is deleted.

