
·'

r­
""'J

f~1UL TICS SY ST Et1- P ROG RAI,H·1E RS 1 tA.AN UA L

Overview of the Bnsic File System

Section BG.O PAGf. 1

Published: 12/13/66
(Supersedes: BG. 0, 5/2/66)

R. C. D a 1 e y, P. G. Neumann, D. t~. R i t chi e

Section BG.O pr~sents an overview of the program structure
of the basic file system. It does not pretend to be
complete, since that is the task of Sections BG.l through
BG.17, which are detailed specifications of the indivldual
modules and data bases.

A summary of the major goals of the Multics file system is
contclined in section 2 of 11 A gener·al-purpose file system for
secondar·y storage," by R. C. Daley and P. G. Neuiilann, Fall
Joint Computer Conference, 1965. A 1 though much of that
paper has been superseded by sections of this manual, It is
sti 11 useful for background information and motivation. The
detailed commands to the basic file system and a surnmar·y of
how the file system looks to the user may be found in
Section BX. 8 of this manual. It is recommended that Section
RX.8 be read before the rem~rnrng BG sections. It is
suggested that Section BG.O be consulted vihene:ver confusion
ari~es in Sections BG.l to 8G.l7 due to quest1ons of gross
f 1 ov; of con t r o 1 •

The t'lultics file system consists of tvm parts, the basic
file system, and the backup and multi level storage
management s ys tern. The llit5.Lc.;. .fJ_LG. .?.J'5_.t....s;.m is that part of
the hardcore supervisor which manages segments. It includes
the transportation-of pages of segments into and out of core
from and onto on-line secondary storage. It also includes a
hierarchical organization of segments into directories, and
a means of controlling the way in which these segments may
be used. The baJ:ktlQ .5_Y._~_t_!,~.m, on the other hand, is that par·t
of nultics which moves infrequently used segr.1ents dowmrard
to slower speed on-llne devices and provides copies of all
segments on off-line devices for retrieval and protection
against catastro~he. These systems provide the user with a
completely device-independent seconda~y storage system whose
care and feeding is done vdthout his cognizance. Section SG
of this manual specifies in detail the design of the basic
f i 1 e s y s t em, \'J h i 1 e Sec t i o n B H s p e c i f i c :; t h e ci e s i g n o f t he
backup system.

/

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 2

In the Multics system, a .!Le.Y.:.J]lent is simply a linear array of
data which is referenced by means of a symbolic name (or
segment number) and a linear index. In general, a user will
not knov1, or need to know, how or on what device a segment
is stored, as this is the responsibility of the file system.

A user may reference data \ti thin a segment either. g_~<;J...t.ly
or imJl.)ici...tJ.y. In the latter case, the user merely refers
to his data during the normal execution of his process and
the data are automatically provided by the file system.
This implicit form of access to a segment is referred to as
_s_egm~nt addr~s~l..o.& and is accomplished by the file system In
conjunction with the paging and segmentation hardware.

A segment may also be referenced explicitly throught the use
of traditional read and write statements.
form of access to a segment is called file
accomplished by means of formal calls to
system.

This explicit
£Q_~re~?JLu& and is
the Multics l/0

Input or output requests which are directed to l/0 devices
other than segments (i.e., tapes, teletypes, printers, card
readers, etc.) are processed directly by a Device Interface
Module which is designed to handle 1/0 requests for that
device. Hm<Jever, 1/0 requests which are dir·ected to a
segment are processed by a special procedure known as the
File System Interface Module. This module acts as a device
interface module for segments within the file system.
Unlike other device interface modules, this procedure does
not explicitly issue 1/0 requests directly to the device.
Instead, the file system interface module accomplishes its
1/0 implicitly by means of segment addressing. See Section
BF for details regarding the 1/0 system.

Whether a user refers to a segment through the use of read
and write statements or by means of segment addressing,
ultimately a segment must be made available to his pro~ess
by the basic file system. In general the basic file system
performs the following functions.

-
1. Maintains di~ectories of existing segments.

2. Makes segments available to a process upon request.

3. Creates, truncates and deletes segments.

Figure 1 is a rough block diagram of the modules and data
bases which make up the basic file system. . As such, it
provides a census for Section BG of this Manual. The solid
lines indicate the flm·J of control through the use of fot·mal
calling sequences (with calls in the direction of the
arrows, where formal returns are implied). The circles in
the diagram indicate some of the data bases within the basic

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 3

file system. Dashed lines indicate the flow of data between
modules and d~ta bases. The modules and data bases drawn
below the dotted line must reside in core memory at all
times since they are invoked during a missing-page fault.

Normally, all of ·the modules of the basic file system are
run as a part of a user's process whenever that process
requires any part of a segment. These modules are segment
control, page control, core control, directory control,
access control, and the device interface modules. Segment
control is cal)ed to establish a segment number, and to
activate, truncate, reassign or terminate segments known to
the given process., Each segment knovm to a process is
described in a table for that process called the known
segment table (KST). Directory control is called by the
user to manipulate directory entries, e.g., to rename or
delete a segment or to alter its access rights. These two
modules are the only ones which may be called by user
procedures.. In addition, page contt·ol is invoked as a
result of a missing-page fault, making use of certain paging
information kept in the system segment tables (SST).
Similarly, segr.wnt control is inv..oked as a result of a
segment fault {e.g., segment not knO\·Jn, segment inactive,
etc.). The remaining modules are completely internal to the
basic file system~ Core control Is the module which
accounts for the availability and allocation of core memory,
information about whicH is maintained in the core map.
Access control determines the access rights for the given
user in using a particular segment~ The device interface
modules {DIMs) are the modules which know about the
peculiarities of the secondary storage. devices, and which
actually control input/output; There is a drum Dl~ for the
high-speed drum (which has its own controller), and a disc
DIM for the DS25 disc {which uses the General Input-Output
Controller, or GIOC).

Segment .QQ.ntrol "

Segment control maintains records of all segments known to
the c u r r en t pro c c s s • B y de f i n i t i o n a_ segment i s .!S..OJ2}·m to a
process if it has been assigned a segment number by the
process. A table of such segments is maintained by segment
control; this is the lsJJ..ovm ~e_gment_ ..t_~_IU_e_ (KST). Each
process has its O\vn KST, containing, for each entry, a
unique identifier which unambiguously identifies the segment
among all that exist or have existed in the system. The KST
entry for a directory segment also contains a list of
symbolic names by. which the process may refer to the
segment. These names are used in ·communication with
directory co.ntrol. Finally, a· KST entry contains other
information pertinent to the use of this segment by this
process, such as the segment number of the segment and
access control information.

MULTICS .SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 4

If a segment is known to some process, it may also have an
entry in a set of tables called the sy~~m ~~~~D~ table~
(SST). The SST is maintained on a system-wide basis; at
most one entry appears for a single segment, even though it
may be known to many processes. The SST consists of the
active,. segmen_t j:able CAST), the .QescriQtor: s~gment tabl_g_
CDST), and the Qroces~ segment tabl~ (PST).

A non-de~criptor segment known to some process may have an
entry in the AST. In this case the segment is called
activ~, and from information in the AST entry a page table
may be created or a missing page restored. Each AST entry
has at least one acti~~ £J~~ trajlQL (AFT), giving
information on the location in secondary storage of the file
corresponding to the segment. One file per segment is the
normal case. However, the backup and multilevel system may
request that a file be moved from one device to another.
Hhi 1 e this movement is in progress, there are tv1o AFT
trailers for the AST entry, one for the original file and
one f o r t he !ILQ...'Le. f i 1 e • Mo v i n g i s do n e d y n ami c a 1 1 y as a
result of the normal transportation of pages in and out of
core; when moving is complete the move ft le wi 11 replace
the original file in the hierarchy. A segment f~r which an
AST entry exists is, by definition, actl.Y..~; if in addition
its page table is in core, the segment is called loaded.
Conceptually, a loaded segment need have no pages in core;
the term "1 oaded" refers on 1 y to the page tab 1 e. (In fact,
page control will usually dispose of the page table when the
number of pages in core drops to zero.)

The table for descriptor segments corresponding to the ·AST
is the descriptor segment table (DST). There is an entry in
this table for each descriptor segment which is loaded, that
is, for which the page table is in core. When the page
table of a descriptor segment is removed, the descriptor
segment is destroyed, rather than moved out to secondary
storage. Thus, the concept of active does not apply to
descriptor segments.

Each active process has an entry in the PST whose function
is to summarize information about certain important segments
in the process. An active process may be taken to be a
process which has an entry in the PST and such that the
segments mentioned in the PST are active segments. (See
also section BJ.2.01) Inactive processes do not have
entries in any of the wired-down data bases in the system,
although the traffic controller maintains a paged table of
known processes. (See section BJ.2.02) ·

When a user wishes to make a segment known to his process,
he calls directory control to find the branch of the segment
in the appropriate directory. When the branch is found,
directory control calls segment control to establish the
segment as known to the process. Segment control takes the

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 5

following steps in making a segment known:

1. Assign a segment number to this segment.

2. Create a new entry in the KST indicating that this
segment is now known to the given process.

3 • Deter m i n e the des c r i p tor con t r o 1 b i t s
segment from the effective mode of the segment
and save them in the KST.

for the
branch,

4. Return the segment number to the calling procedure.

When a segment first becomes known to a process, it may be
Inactive. (It could also be active, because another process
might be using the segment as well.) When a reference is
made to an inactive segment, a segment fault occurs.
Segment control. is called, and the following steps are taken
to activate the segment.

5 • Us i n g t h e s e gm en t number , 1 o c a t e t h i s s e grn en t I n
the KST, and obtain the unique identifier for the
segment.

6a. Search the AST for a segment with this unique
Identifier. If none is found, create an AST entry by
calling directory cont~ol to get the needed information
from the directory branch pointing to the segment. (The
KST has a pointer to the proper directory.)

6b. Whether the AST entry already existed or had
created, enter this process in a part of the AST
containing a list of processes currently using
segment.

to he
entry
this

7. Establish the segment descriptor in the descriptor
segrnen t.

8. Read in the referenced page or pages vi a a call to
page control; page control will establish the page
table (load the segment) if necessary.

As a result of steps 5. -through 8., the segment is novJ
active and loaded.

In step 6a above, it was necessary to find the director~
branch pointing to a segment in order to activate the
segment. If this directory is inactive when directory
control attempts to read it, another segment fault vii 11
occur and it will be necessary to activate the directory
segment. This in turn may cause another segment fault when
directory control attempts to read the directory superior to
the directory; this sequence of faults will continue unti 1

·an active directory is found, but must ultimately terminate

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 6

because the roo: directory is always active.

In addition to the functions described above,
contr~l provides entries through which the user segment
questaons ~r make decla~ations involving the use of may ask
known to hts process. Some of these funct"tons segments
below. are listed

1. Declare, that some specific locations
segment are no longer needed at this time,
be written ~nto secondary storage.

2. Detlare that some specific locations
segment are to be required shortly.

within a
and should

within a

3. Terminate a segment, i ndi cati ng that
is no longer to be considered as known to
process.

this
the

segment
calling

4. Truncate a segment.

Direct~ Control

Directory control provides all the basic tools for
manipulating entries within a directory. It may be called
by segment control or directly as a result of a file system
command. Th~ functions provided by this module perform
primitive operations and are usually augmented by more
elaborate system library procedures (see BX.8). The
following is a list of some of these operations.

1. Create a new directory entry:

2. Delete an existing entry.

3. Rename an entry.

4. Return status information concerning a particular
entry or entries.

5. Change the access control information for a
particular branch.

6. Find a branch' and make the segment to vJhl ch it
points known to the process.

Whenever a user wishes to perform. any operation on the
contents of a segment pointed to by a particular directory
en t r y, t h e b r an c h po i n t i n g d i r e c t 1 y to . t h a t s e gm en t i s f i r s t
obtained from that directory.· Acces.s control is then called
to determine what permission the user may be granted.

Thus, when directory control is called from outside the
basic ft le system (e.g., "call statu5(.Qathname, _g_Qtry_D_arrt~.,

t·1ULT ICS SYSTE~-1-PROGRAIH~ERS 1 t·1ANUAL Section BG.O PAGE 7

•••);"), directory control must be able to read the
necessary directory (i.e., that specified by Q..athnarne) c:s a
segment. To do this directory control asks segment--control
to search the KST for a directory segment with the proper
name. If there is su~h an entry in the KST, then segment
control returns .the corresponding segment number. If,
hov,rever, the directory is not knovm, segment ·control calls
directory control in order to get the information needed to
establish the directory in the KST: namely, the information
In the branch pointing to the directory; this branch is
contained in the next superior directory. In order to read
this superior directory, directory control must recursively
call segment control to obtain a segment number for it.
This recursion terminates when a known directory is found or
\'lhen the root, \•Jhich is kno\·Jn to directory control, is
reached.

A c c e s s C o rrtr_QJ..

Access control ts called by directory control to evaluate
the access control information for a particular branch.
Thus the name of the user and the access control information
for the branch in question is made available to access
control. The access control returns a single effective mode
to directory control. The effe..£:tiye DlO.QJ:-;. is the mode v1hich
governs the use of a file 0ith respect to the current user
or process. This effective mode is· used by dfrectory
control to determine if the requested operation is to be
perrnitted.

The apparent mode of a branch (specified in the access
control information) consists of the TRAP, READ, EXECUTE,
H R 1 T E a n d A P P Ei'lD a t t r i b u t e s , d e f i ned i n S e c t i o n B X • 8 • I f
the TRAP attribute is OFF for a given user, then the
effective mode is in fact the apparent mode. If, however,
the TRAP attribute is ON, the effective mode is obtained as
follows. Associated with the TRAP attribute is the path
name of a single procedure to be called, along with a list
of para~eters to be passed to this procedure (unless the
user has inhibited traps, in which case an error return
indicates that access has been denied). This procedure is
also passed the user's name, his apparent mode and the names
of the directory and branch in question. This procedure
must return the effective mode to the access control module.
As a result, this procedure may alter the user's apparent
mode of the branch in question. The TRAP attribute is
extremely useful for monitoring of segment usage,. f~r
applying special restrictions on segment usage not wtthtn
the framework of the usage attributes (e.g., lock
mechanisms), for avoiding the necessity of c~eating. a
segment until it is actually nee~ed.(e.g., somethtng whtch
might never be needed), for retrtevtng a segment n? longer
residing on the on-line storage system (see Sectton BH),
etc.

.... -
.. -----····

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 8

There are facilities for system traps of a similar nature
which are however not available to normal users. These
system traps are not inhibitable, and are also not
detectable. They a·re present so that the system may gather
Information for its own use.

Page _kpntrol

Page control is responsible for overseeing all segment l/0
and for maintaining page tables. For example, page control
may be called by segment control to perform input or output
operations for pages of segments. When a process references
a \'lord in an Inactive segment, segment control, after
activating the segment, calls page ~ontrol to obtain the
page containing the word requested. If the segment is not
already loaded, page control first creates a page table,
each word of which contains a fault Indication and a flag
specifying what should be done when and If that fault
occurs. The flag may indicate either that a blank page
should be assigned or that the referenced page should be
read in from secondary storage. Then the referenced page Is
read in If necessary and its page table word Is set to point
to the proper core location.

Control also passes to page control by means of a
missing-page fault in a page table in use by the current
process. This fault may indicate that a new page should be
assigned or that an existing page should be read in from an
active file. In either case a block of core must be
assigned before anything else can happen. This is
accomplished by a call to core control.

If a new page is to be read in, the page table entry for the
missing page contains a pointer to the appropriate entry in
the s y s t em segment tab 1 e s • I f the s e grn en t i s be i n g moved
from one device to another, there is a flag indicating
whether this page has already been moved. If it has been,
it is read from the new device. In any case the AFT trailer
on the AST entry for the segment contains a pointer to the
appropriate location in secondary storage. This pointer is
passed as a parameter to the DIM with a -read request to
bring the correct page to core memory.

Finally, core control may call page control to indicate that
a page should be removed because of lov.r usage. If· the
segment containing the. page is being moved, the page is
always written out onto the new device and its page table
word is marked so that the move is remembered.

When the last page of a segment is removed from core, page
control usually releases its page table. If the segment Is
being moved, page control checks the page table words to
find if there are any pages that haved not been moved. If
there are, one of the unmoved pages is read into core. This

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 9

page is soon removed because no one uses it, and the next
unmoved page is read in. This sequence continues until the
move is complete when the segment will at last be unloaded.

Core Control

Core control provides core space for pages and page tables
to page control. It maintains information on the
avai labi 1 i ty of each block of core and how this block is
being used. This information is kept in the ~ore plaR, and
includes the availability of the block to the system,
whether the contents of the block may be removed from core,
and their eligibility for removal.

Those blocks whose contents are candidates for removal are
indicated in the core map by a usage list in the order of
decreasing frequency of usage. This is a linked list in the
core map. At periodic intervals, the list Is reordered by
core control on the basli of use In that period. When
blocks of core are required for assignment, it is In general
necessary to remove some pages from core. These pages are
chosen from the bottom of the usage list, and are removed
via page control. In the actual implementation, a pool of
unassigned core blocks is maintained so that requests may in
fact normally be satisfied simply and quickly, without the
prior removal of pages from core. This supply of unassigned
core is replenished by the removal of pages as required •

.Q_~vi G_Q. JJlterface r.1og.J.Ll_Q;i

For e~ch type of on-line secondary storage device used by
the basic file system, a device interface module is
provided. A device interface module has the sole
responsibility for the strategy to be used in dealing w!th
the particular device for which it was written. Any ~pec1al
considerations pertaining to a particular storage dev1ce are
invisible to all modules except the interface module for
that device.

A device interface module is also responsible for assigning
physical storage areas, as needed, on the.device f?r which
i t v1 as \'J r i t t c n • To a c com p 1 i s h t h i s f u n c t 1 o n, the 1 n t e: face
module must maintain records of all storage ~lready ass1g~ed
on th<:lt device. These records are kept in .f.Llg maps v1h 1 ch
reside on the device to \'l'hich they refer. The Dlt:;s also
maintain freg J>tO.L9..r;..<l D_l<J..P...:'?. to aid in assigning locations for
new Information sent to their devices.

Each DIM accepts four types of requests:

1. Read

2. \'4ri te

MULTI CS SYSTEf.1-PROGRAt1HERS' MANUAL Section BG.O PAGE l'J

3. Truncate

4. Clean up
I

Read and write requests ·specify the core location from or to
which the affected information is to be moved, the location
of this information within its segment, and a pointer to an
AFT that gives the location, on the DIM's device, of the
file map for the segment that is involved. The DIM reads
the file map for the segment to find the location of the
affected pages ' and then performs the indicated 1/0.
Portions of theft le maps for segments with a high 1/0 rate
are kept in core in a Dft,1 histor:t table to avoid the extra
read operations necessary to get the file map.

A truncate request specifies an AFT and a 64 word record
beyond which the segment is to be deleted. The file map is
read and the records beyond the limit are placed on the free
storage map. Truncation from record 0 causes the entire
segment and its file map to be released.

The cleanup request is given to info~m
specified AFT is about to be removed and
remove all core-resident information for
the DIM history table.

the DIM that the
that the DIM should
this segment from

Each request given to a DIM Is placed in a queue. Since
several 1/0 operations may be needed to complete each
request, the Dlt1 does not attempt to finish a request before
going on to the next, but instead wi 11 do as much work as
possible on each request and then go on to the next request
in the queue. Each time a DIM is called, whether with a new
request or· as a resul·.: of an 1/0 interrupt, the queue is
scanned to see if there is any work that can be done.
Whenever a request is finished, page control is called and
informed of this fact.

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.O PAGE 11

director!~
I \ e

-"""--7[~egmen~ ··~[~rectory , access
control control control

/
/

1
• • • • • 0 •

dim

---~ v

Figure 1. The Basic File System

