
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 1

Published: 03/13/68

Identification

Dim Command Module
S. W. Jones

Purpose

The module dim corrmand is responsible for servicing file
system requests which involve transferring pages of segments
to and from on-line secondary storage devices.

Introduction

The function of dim_convnand is to process ~ .. write.,
and delete requests for files on secondary storage. To
accomplish this, dim_command constructs pseudo-commands
for device control and maintains a file map describing
the file as it resides on the device.

dim command is called by di~file io at one of the three
entry points, ~read, ~write, or $delete, depending upon
the request to be processed. Accordingly, pseudo-commands
are constructed and passed to dev_ctl~new_io which is
responsible for building the actual device commands (DCW's).
Control is then returned to di~file io whether or not
the device commands have been executed.

A non-zero error code on return from dim command indicates
that the device is inoperative and that the request cannot
be completely serviced. A zero error code indicates only
that the responsibility of completing the request has
been turned over to the (asynchronous) device control
module.

Records .Q!l the .;:;,de;::;.v:;..:i:.;;;c;.;;.e

Pages of segments when stored on a secondary device are
known as records of files. Each record contains 64 words
and is stored on the device as part of a hyper-record
(a group of 2., 4, 8, or 16 contiguous 64-word 61ocks).
The number of records within a hyper-record depends upon
the device; the records within a hyper-record are called
sub-records whenever confusion may arise from the term
record. Hyper-records of a file are stored randomly on
the device; the device address of each hyper-record is
stored in the file's associated file map.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 2

Before the first write request is issued for a given file
its file map contains all null addresses (octal 777777). '
The null address denotes to dim command that any hyper-record
having this as its address does-not have space allocated
for it on the device. It is therefore a signal to dim_command
that space must be allocated for the hyper-record before
any of its sub-records may be written. The address of
the allocated hyper-record replaces the null address in
the file map for future use.

Every record will appear to contain all zeroes on the
device until it has been explicitly referenced in a write
request. Different techniques are required to achieve
this effect depending upon the request. When attempting
to read records of a hyper-record having a null address,
dim_command interprets them as records containing all
zeroes and calls a routine to physically store zeroes
(instead of reading zeroes from the device). Similarly,
for a write request involving a hyper-record with a null
address, those sub-records not specified are zeroed on
the device.

The null address is one of two reserved addresses; the
function of the other reserved address (the marked address,
octal 777776), is described later in this section.

Records in ~ memory

Records to be transmitted to or from core memory must
be read into or written from contiguous 64-word blocks.
In addition, dim_command deals only with the left-most
18 bits of the 24-bit memory address, so that l/0 is always
started on a 64-word ·page boundary (i.e., the right-most
6 bits are conventionally zeroes) •

.Qo. the ca 11 i ng .Qf. dim corrmand

The entries of dim_command are called as follows:

call dim command~read(did,fmptr,recno,count,ioqx,err);
call dim-comman~write(did,fmptr,recno,count,ioqx,err);
call dim_command~delete(did,fmptr,recno,count,ioqx,err);

del did fixed binary (35),
fmptr pointer,
recno fixed binary (35),
count fixed binary (35),
ioqx fixed binary (35),
err fixed binary (35);

,~:;
i'·. I.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 3

did is the identification of the device on which the
me resides.

fmptr is a pointer to the file's file map. The file
map contains a device address for each hyper-record of
the file and an interlock to avoid certain types
of simultaneous access to the file map.

recno is the record number of the first record of the
request. Record numbering begins with 1 (one).

count is the number of records to be affected by the
request.

~ is the index of this request as it exists in a
table of outstanding requests. The table contains
additional information related to the request.

~ is the error code.

The lQ queue (IOQ) is a table which is totally internal
to the DIM. A primaay entry is allocated with each new
call request# to hoi the arguments to di~file_ioJ the
entry is de-allocated by dims~service_done_list just before
iodone is called. While the entry is allocated, portions
of it serve as a working area for both di~command and
dev_ct 1.

The IOQ appears as follows,

del 1 ioq (Os1024) based (xx),
2 astep bit (18),
2 did bit (4),
2 op bit (3)
2 state bit ~10),
2 filler bit (1)(
2 memadd bit (18J
2 linkage bit (18~,
2 status bit (18),
2 hrc_count bit (18)J

I* aste relp *I
I* device id *I
I* operation *I
I* arg to iodone *I
I* memory address *I
I* inter-q link *I
I* accumulated status *I
I* number of pseudo-
••• commands generated *I

astep is the pointer to the file's ast entry. This
parameter is not used by the DIM. (It is merely
passed to iodone when the request is completed.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02
I

PAGE 4

Q!Q is the identification of the device.

QQ is the operation to be performed on the file. (op is
equal to 0 for read, 1 for write, and 2 for delete.)

state is the state of the file as seen by the file system.
This parameter is not used by the DIM. (It is passed to
iodone when the request is completed.)

memadd is the left-most 18 bits of the absolute starting
memory address. The remaining 6 bits are conventionally
zeroes.

linkage is a working area for dlm_corrmand. If the value
Is non-zero, then it is the index of a secondary IOQ entry
in the table; this secondary is used only by $write and is
described later.

status is the "worst unrecoverable" hardware error to occur
with DCW's for this request. The precise meaning of this
parameter is explained in BG.10.07.

hrc count is the number of pseudo-commands generated by this
request. Initially, the value is the number of hyper-records
within the scope of the request which will generate DCW's.
As the request is being processed, the count is decremented
when a set of DCW's for a hyper-record has been executed.
This is done by dims$post when called by dev_ctl to signal
that a set of DCW's has been completed. When the count
reaches zero, processing of the request is essentially
completed. ·

Strategy of dim command5read

$read services the requests which involve transferring
records of files from a secondary storage device to core
memory. If a record is requested and the hyper-record
containing that record has space allocated for it on the
device, then ~read extracts the device address from the
file map and constructs pseudo-commands for device control
to read that record into core. If the address of a record
is a reserved (null or marked) address, then it is assumed
that the record contains all zeroes. To avoid the overhead
of reading zeroes from the device for records of this
type, $read calls a routine which zeroes contiguous pages
of core.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 5

Strategy of dim commandSwrite

~write services the file system's requests which involve
transferring records from core memory to secondary storage.
If a record is requested and that record has space allocated
for it on the device (that is the address from the file
map is not a reserved address~# $write simply extracts
the associated device address from the file map and constructs
the pseudo-commands to over-write the previously written
records.

If# however# a record requested does not have space allocated
for it (that is# its address in the file map is null)#
then $write calls the device free storage routine to obtain
an unused address. This address is placed in the file
map when every record of the hyper-record is to be written;
processing then proceeds as above. If not all the sub-records
of the hyper-record are to be written# that is# for example,
given a hyper-record size of four# write records three
and four only# then the real address is used for writing
the records as required by the request (records three
and four) and for zeroing the remainder (records one and
two). While this "initializing11 is taking place# the
address in the file map is replaced with a marked address
(octal 777776) and the real address is saved in a second
ioq entry (see below). After the DCW's associated with
this hyper-record have been executed# the real address
replaces the marked address in the file map.

To dim_command# the marked address# which is the second
reserved address# has the following meaning:

a) to ~read# 'the sub-records contain all zeros (same
treatment as with the null address).

b) to ~write# the sub-records cannot be written until the
marked address is replaced with the free address. A
marked address for a record therefore implies that space
li being allocated for the record.

c) to ~delete# the sub-records have been deleted.

The marked address is necessary since the DIM requires
only that two simultaneous requests cannot reference the
same record of a file. If the restriction were stronger#
namely that no two simultaneous requests fall within the
same hyper-record of a file# then the marked address would
not be needed.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.10.02 PAGE 6

Secondary ~ entries

The IOO has an additional over-lay which corresponds to
the secondary entries; that is# a secondary IOQ entry
is merely an IOQ entry with a different format and use.
A secondary entry is of interest only to $write and to
dims$post.

$write requires a secondary entry when a null address
is being replaced by a marked address (which is ultimately
to be replaced by a "normal" address). In this case#
a secondary entry is obtained (if one does not already
exist for this request)# and its index is stashed in
"linkage" of the primary lex;> entry. The secondary entry
itself serves as the temporary store for the "normal"
address while some of its sub-records are being zeroed.
More precisely# the secondary entry is filled with the
following informationa the relative pointer of the file
map# the index of the hyper-record~s address slot within
the file map# and the hyper-record address. There is
room for two indexes and two addresses. corresponding
to the first hyper-record and the last hyper-record within
the scope of the request. If the first hyper-record is
also the last hyper-record. then the second index and
address will not be used. To reiterate. the secondary
entry is needed only when the request is "write" and the
first (or last or both) hyper-record address within the
scope of the request is null.

The secondary entries appear as follows:

del ioq2 (0:1024) based (xx).
2 fm_relp bit (18)#
2 count bit (18).
2 tfskb1 bit (1).
2 fm_lndex1 bit (17)#
2 dev add1 bit (18).
2 tfskb2 bit {1).
2 fm_index2 bit (17)#
2 dev_add2 bit (18);

/*file map relp*/
/*items used*/
/*disc only*/

·/*first fm index*/
/*first address*/
/*disc on 1 y,'c I
/*second fm index*/
/*second address*/

The parameter count is set to one (1)! when the secondary
entry is obtained and is set to two (z) if the second
index/address pair are needed. Possibly. dev_ctl will
issue and post the first set of ocw~s before the last
hyper-record is processed by $write; in this case# $write
must allocate another secondary entry (with a count of
one) as a replacement. dim_command does not know that

..

•.

'.,~ ... ·.··•··
i

'~ .. '

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 7

the secondary ioq entry is a replacement. (Note that
when the count is decremented to zero by dims$post, all
hyper-records to be initialized have been, and so the
secondary entry is de-allocated and "1 inkage" in the primary
entry is zeroed. In any case, dims$post is responsible
for replacing the marked address in the file map with
the address saved in the secondary entryJ that is, $write
initiates the mechanism and dims$post terminates it -­
just as for any other type of I/0 operation).

It should be noted that when hyper-page size is an even
multiple of hyper-record size, the DIM is most efficient
and the need for a secondary IOQ entry is eliminated.

Strategy of dim cgmmandSdelete

$delete services the file system's requests to delete
records of files residing on a secondary storage device.
For each hyper-record within the scope of the request,
$delete does one of the following:

1. If every sub-record of the hyper-record is to
be deleted and the hyper-record is not null, the device
address is returned to the device free storage routine,
and its address in the file map is replaced by the
nu 11 address.

2. If the hyper-record address is null or marked, the
appropriate records are assumed to be deleted already.
More precisely, either space has never been allocated
(null), or the space being allocated does not overlap
the records being deleted (marked)J in either case, the
deleted records will contain zeroes if later read.

3. Otherwise the sub-records to be deleted are zeroed
on the device.

The condition of deleting an entire hyper-record, when
the hyper-record is marked, is in violation of the rule
against simultaneous record accessing.

It should be noted that an address is returned to free
storage only when the entire hyper-record is within the
scope of a delete request. Thus! for example, deleting
an entire file one record at a t me (that is, one record
per request) is not the same as deleting the entire file
with one request. In the first case, no addresses are
released to free storage, and in the second, all the addresses
are released. However, this is not a problem at the current
time because page control deletes records in multiples
of 1024 words.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 8

sumrnary of calls made by dim command

Following is a list of all DIM procedures used by dim_command
accompanied by a definition of the input parameters and
brief explanation of the service each procedure performs.

1. call zero (address, null, pgct) 1

del address fixed bin (35),
nu 11 ptr,
pgct fixed bin (35);

address is the memory address divided by 64.

OYl! is a null pointer.

29£1 is the page count (in small pages).

The routine is used by $read when a reserved address is
encountered. fg£1 number of consecutive pages starting
at the specified memory address are zeroed.

2. call dev_ctl$new_io (did, iocmd array, memadd, devadd
posting_cmd, posting_index, notTfy_parameter, block_slze,
err _code);

del did fixed bin (35),
iocmd_array (~6) fixed bin (35),
memadd fixed bin (35),
devadd fixed bin (35),
posting_cmd fixed bin (35),
posting_index fixed bin (35),
notify_parameter fixed bin (35),
block_size fixed bin (35),
err_code fixed bin (35),

~ is the device identification.

iocmd array is the array of pseudo commands (read, write
idle, write zeros). One element of the array corresponding
to one record in the hyper-record.

memadd is the address relative to the first record in
the hyper-record at which 1/0 will occur.

deyadd is the device address relative to the first
record in the hyper-record at which I/O will occur.

p9sting c~ is the indication of what should be done after
the issue device commands have been executed. (Refer to
BG.10.05 for detailed explanation).

' .

. .-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 9

notity pjrameter is a parameter associated with posting_
cmd see BG.10.05), and here is the indication of which
file map address must be updated after the DCW's for
this given address have been executed.

block si;e is the number of records in a hyper-record.

err cody is the error indication returned by dev_ctl$
new_lo f the device is not operative.

$read, $write, and $delete construct pseudo-commands to process
block_size number of records (a hyper-record) at a time.
dim_command completes processing each hyper-record when
it passes the above information from which dev_ctl constructs
DCW's.

3. call dims$wait (did,err_code),

del did fixed bin (35),
err_code fixed bin (35),

did is the device identification number.

err code is the error status returned if the device is
Inoperative.

This routine is used when a marked address is encountered
by $write •. dims$wait is called to speed up the execution
of the outstanding DCW's for the hyper-record involved.

4. call free_store$withdraw (did,address, err_code)J

del did fixed bin (35),
address. fixed bin (35)(
err_code fixed bin (35JJ

~ is the device identification number.

address is an unused device-address.

err code is the error indication returned if the device
Is not operative.

This routine is used by $write when a hyper-record does
not have device space allocated. An unused device-address
is obtained from the device free storage routine.

MULTI CS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.02 PAGE 10

5. call free_store~release (did, address, err_code);

del did fixed bin (35).
address fixed bin (35)(
err_code fixed bin (35;J

did is the device identification number.

address is the device address.

err code is the error indication returned.

gdelete returns a device address to the device free storage
routine.

6. ca 11 dims~gf (ioqx,err _code);

del ioqx fixed bin (35),
err_code fixed bin (35);

iogx is the ioq entry index.

err code is the error status returned.

A secondary ioq entry with index, ioqx, is allocated for gwrite.

7. call dimsglf (ioqx);

del ioqx fixed bin (35)J

iogx is the ioq entry index.

This routine is used by ~write to return an ioq entry
to the ioq free list.

8. call dims~ld (ioqx);

de 1 ioqx fixed fin (35),;

iogx is the ioq entry index.

This routine is used by ~read and ~delete to link an ioq
entry to the done list.

External system lock routines used by dim command

1. call ilock~looplock (p,err);

2. call i lock~ loopunlock (p);

Explanation of function and parameters is given in BG.15.02.

