
. - ~
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.~.02 PAGE 1

Jdentifica.tion

Standard Interlock Mechanism
C.A.Cushing

Purpose

Published: 06/08/66

The interlock mechanism described here is used for all data
bases in the basic file system which are common to more than
one process. This mechanism is used to some degree in
manipulating the following data bases:

1. System Segment Tables (PST,DST,AST)
2. Active File Table (AFT)
3. I/0 Queues (Q)
4. Core Map
5. All directories
6. Process waiting tables (PWT)

jntroduction

Each data base for which the standard interlock mechanism
is used must have the following three consecutive words in
the data base. -

1. ~

This word initially has the value zero and is used to lock
the data base from all other processes. If the contents
of loc~ are 0, the data base is unlocked. If the contents
are non-zero, the data base is locked on behalf of the
process whose identification number is the non-zero value
of lock.

2. ~0-MORE-R~AQERS SWITCH (NOMORE)

If this switch is on, no processes will be allowed to read
this data base. This switch is set on by a process which
is about to go blocked waiting to ,modify the data base.
Whenever lo&k or read count change from non-zero to zero,
this switch is checked by the process which caused the
change. If the switch is on, it is turned off and this
process calls notify to unblock any processes waiting to use
the data base.

3. READ COUNT

This word contains a count of the number of processes
currently using the data base for reading purposes only.

;/
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.j?.02 PAGE 2

lnterlocking Primitiyes

1. If a process wishes to modify a common data base, the
subroutine

call modlock (p,event,var,waitrtn);

tests the lock of the data base pointed to by the pointer £
(ITS pair) to see if modification can be permitted. If this
process may not modify the data base. the no-more-readers -
switch is set on, the process is entered on the PWT according
to ~yent and ~~ and control from modlock is returned to the
statement labeled waitrtn in the calling procedure. At this
point, the calling procedure has the opportunity of doing any
necessary processing before going blocked.

IMPLEMENTATION

segdef
segref
segref
segref __
temp
tempd

modlock: save
eapbp
eapbp
fld
staq
ldaq
staq
ldaq
staq
stz
lda

retry: stac
tnz
szn
tnz
szn
tze
call

rtn: return

wa i t1 :
wait2:

stz
szn
tnz
call

mod lock
processdata,processid
pwn,addpwt
pwn,delpwt
tryct
argl i st (3)

ap,2,*
bp 0,*
=4b25,dl
argl ist
apl4
arg 1 i st+2
apl6
argl i st+4
tryct
processid
bpiO
wait2
bpJ2
wa1t1
tryct
rtn
de 1 pwt (a rg 1 i s t)

bpiO
tryct
waitrtn
addpwt (arglist)

area for argument list

bp=ptr to lock of data base
store z·k number
of arguments as first pair

(event)

(var)

try to lock data base

are readers in data base?

no.test number of tries
successful on first try
successful on second try

readers in data base-unlock
data base already locked

try again but first get on PWT

r·

·~
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.~02 PAGE 3

aos
tra

waitrtn: aos
ldaq
ldb
ldi
staq
1 reg

· tra
end

tryct
retry

bp,
apl8,*
sp !16, *
sp 21
sp 20
sp 8
spl20,*

in case of second
failure

failure-do not let any
others succeed

return to wait

2) If a process wishes to read a common data base, the
subroutine

call readlock (p,event,var,waitrtn);

must be called. A normal return implies that the process
has successfully been added to the number of readers of the
data base and may read it also. A return to waitrtn implies
either that the data base is locked by another process or
that another process is blocked waiting for readers to
leave this data base (i.e., nomore-readers switch is on).
This process must now go blocked or remove itself from
~vent list in the PWT.

IMPLEMENTATION

segdef read lock
segref processdata,processid
segref pwn,addpwt
segref pwn,delp.Nt
temp t tryct

(3) tempd argl 1st

read lock: save,
apf2.* eapbp

eapbp bp!O,* bp=ptr to data base lock
fld =4b25.dl 2* number of arguments
staq arg 1 ist
ldaq apl4

(event) staq arTl ist+2
ldaq ap 6
staq arg 1 i st+4 (var)
stz tryct
lda

retry: stac
processid
bpiD try to lock data base

;j,

~- ·~

MULTICS SYSTEM-PROGRAMMERS' MANUAL
,6

SECTION BG. 1){. 02 PAGE 4

rtn:

wait1:

wait2:

tnz
szn

tnz
szn
tze
call

aos
stz
return

stz

szn
tnz
ca 11
aos
tra

waitrtn: ldaq
ldb
ldi
staq
1 reg
tra
end

wait2
bpl1

wait1
tryct
rtn
de 1 pnt (a rg 1 i s t)

bpl2
bp 0

bplo

tryct
waitrtn
addpwt(argl ist)
tryct
retry

apj8,*
sp 16,*
spl21
spl20
spl8
SPI20,*

if locked,
are more readers
allowed?

yes. test number of tries
successful on first try
successful on second try

Increase read count
unlock data base

unlock data base, no
more readers allowed
data base locked

try again, but first
get on PWT
in case of second failure

failure

return to wait

3. When a process has finished modifying a common data
base, the subroutine

call unlock (p,event,var,errtn);

unlocks the data base for this process and wakes up any
other processes which may have been blocked trying to use
the data base. If the process calling unlock was not the
process which locked the data base, an error will be reflected.

IMPLEMENTATION

segdef
segref
segref
tempd

unlock: save
eapbp
eapbp

unlock
processdata, processid
pwn,notify
argl i st (3)

a pi 2, *
bpi 0, * bp=ptr to lock of data

base

,.....,
MULTICS SYSTEM-PROGRAMMERS' MANUAL 1. SECTION BG. .02 PAGE 5

fld •4b25,dl
staq arg 1 i st
ldaq apl6
staq aryl ist+2 (event)
ldaq ap 6
staq arglist+4 (var)

unlocking lda processid be sure process
cmpa bpiO base originally locked it

tnz error
stz bpfO unlock data base
call notify(argl ist) wake up process.es blocked

rtn: return because of lock

error: ldaq ap[8,* logic error
ldb spl16,*
ldi SPI21
staq sp120
1 reg sp 8 ·
tra SPI20,* error return
end

4. When a process Is through reading a common data base,
the subroutine

call decrease (p,event,var);

must be called.

IMPLEMENTATION

segdef
segref
tempd

decrease: save
eapbp
eapbp
lda ·
a sa
tnz

last: stz
fld
staq
ldaq
staq

decrease
pwn,notify
argl I st(3)

ap(2,*
bpiO,*
==-1
bpf2
rtn

bp 11
==4b2S,dl
ar~list
apl4
arg 1 i st+2

reduce number of readers
by one
if last reader

zero no-more-readers switch

-~-
t-1ULTICS SYSTU·l-PROGRA:'-i~iERS' fvl.ANUt~L SECTION BG.~02 PAGE 6

rtn: ·

ldaq
staq
call

return
end

apl6
argl ist+4
notify (a rg 1 is t)

and wake up processes
blocked because of readers

For example~ a process may attempt to modify a data bdse
with the following PL/I sequence

try:
modify:

waitrtn:

call modlock (p~event~var~waitrtn);

.
call block;

go to try;

I* wait for datd base to become
un 1 ocked;': I

or attempt to read a datd base with the following PL/I
sequence

try:
read:

waitrtn:

call readlock (plevent~var~waitrtn);

• . .
call block;
go to try;

or unlock a data base with the following sequence

removelock: call unlock (p,event,var~err);
continue:

.
err: ca 11 1 oa i c error h3nd 1 e r;

.;;J - -

Oqi~9£~e Entrt_I~jerlQc~~

In some cases, it may suffice to lock a p~rticu13r entry in a
common data base rathe~ than th~ ~nt~~E dat3 t~;e. This is

,§
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.~02 PAGE 7

done when it is necessary to make a change to an entry in a
data base which does not affect the rest of the data base,
e.g., the change does not affect the length of the entry.
It may not only suffice but also be advisable to lock an
entry in a data base rather than the entire data base.
This is true when the change to be made to an entry may take
an undetermined amount of time, and this change is dependent
on the current contents of the entry. For example, this
lock is applied to a branch in a directory from the time the
branch is found by segment control until the file to which
it points is activated by usage control.

For every data base in which this technique is used, each
entry in that data base must contain the following additional
word of information.

LOCK - This word is used in the same manner as the lock
for the entire data base as previously described.

Entry_InterlQcking Primitives

If a process wishes to lock an entry in a common data base
(in order to modify it or read a stable copy of it), the
process must first read the data base to find the entry
if the location of the entry is not already known. Once the
location of the entry is known, the process must record its
identification in the lock for that entry. This is done by
the subroutine

call entrylock (ep,event,var,waitrtn);

where gQ is a pointer (ITS pair) to the lock of the entry in
the data base. If entrylock is or is not successful in
locking the entry in the data base for this process, the
process must leave the data base as a reader, i.e., decrease
the read count of the data base.

IMPLEMENTATION

segdef
segref
segref
segref
temp
tempd

entrylock: save
eapbp
eapbp

entry lock
processdata, processid
pwn,delpwt
pwn,addpwt
tryct
arglist(3)

apl 2, 1~
bpJO.* bp=ptr to lock in entry

,r--

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION PAGE 8

retry:

fld
·---staq

ldaq
staq
ldaq
staq
stz
lda

stac
tnz
szn
tze
call

rtn: return

wait: szn
tnz
call
aos
tra

wa i t r t n : 1 daq
ldb
ldi
staq
1 reg
tra
end

=4b25,dl
arg 1 ist
ap~4 ar list+2
ap 6
argl i st+4
tryct
processid

bplo
wait
tryct
rtn
de 1 pwt (a rg 1 i s t)

tryct
waitrtn
addpwt(arglist)
tryct
retry

apf 8, ·k

spl16, *
sp 121
sp 20
spl8
!'iPI20,*

2* number of arguments

event

var

try to lock entry

successful on second try

unsuccessful

try again but first
get on PWT in case
of second failure

failure

return to w:dt

When the entry is to be unlocked, the subroutine

call entryunlock (ep,event,var,err);

unlocks the entry for the process and wakes up any processes
which are waiting fo_r it to become unlocked.

IMPLEMENTATION

segdef
segref
segref
tempd

entrylock:save
eapbp
eapbp

entryunlock
processdata,processid
pwn,notify
arg 1 i st (3)

apl 2, -lc

bPI o, * bp=ptr to entry lock

.t

. ,r-·

(

" MULTICS SYSTEI-1-PROGR . .C.J-1r·1ERS 1 rviANUAL SECTION BG.~02 PAGE 9 .

err:

fld
staq
ldaq
staq
ldaq

- staq
lda
cmpa
tnz
stz
call

return

ldaq
ldb
ldi
staq
1 reg
tra
end

=4b2S .. dl
argl ist
apl4 ·
argl ist+2-
apf6
arglist+4
bp~io
processid
err

, bpi 0 .
notify (a rg 1 is t)

apia,-.':
spl) 16, *
spll21
sp 120
spl8
spl2D.*

be sure entry locked
by this process

unlock entry
wake up processes
blocked
because of lock

logic error

error return

For example, a process may attempt to modify an entry in a
common data base with the follovJing PL/I sequence

/* If location of entry not known, begin here */

tryread: call readlock(p,event,var,waitrtn2);
search: search_svJitch= 111 11 b;

/*search for entry in data base*/
•
•
• .

found: go to trylock;

/*If location of entry knovm,begin here ... ~/

trymodi fy: sea rch_svJi tch= 11 011 b;
trylock: call entrylock (ep,event1,var1,waitrtn1);

if search switch then -
call-decrease (p,event,var);

/*entry 1ocked,can modify fixed-length items in entry*~~

---- . .lJ •.

·•

,.......,
I

p;
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.~02 PAGE 10

modify_fixed:

•
/*must lock data base to modify variable-length

items in entry*/

modify_var: call modlock (p,event,var,waitrtn3);

• .
done: call unlock (p,event,var,err);

call entryunlock (ep,event1,var1,err);

.
wait rtn1 :
waitrtn2:

if search switch then call decrease(p,event,var);
call block;

wait rtn3:

if search switch then go to tryread;
else go to trylock;
ca 11 b 1 ock;
go to modify_var;

SQecial Interlock

The procedures gdd~ and del~ must handle interlocking
of the wired-down PWT in a special way. Those procedures
which must be entered into (deleted from) an event list in
the wired-down PWT, must continuously attempt to lock the list
in order to be entered (deleted), i.e., they must loop.

ca 1 1 1 oop 1 oc k (p) ;

IMPLEMENTATION

segdef loop lock
segref processdata, processid

loop lock: save
eapbp ap(2,* bp=ptr to lock of event
eapbp bpi 0, •k list in latched PWT
lda processid
stac bpiO attempt to lock 1 is t
tnz *-1
return locked
end

.. l

·.r-

MULTICS SYSTEM-PROGRAMMERS' MANUAL

_/
P;

SECTION BG.}e. 02 PAGE 11

When the attempt is finally successful, the process can then
be entered or deleted. The following subroutine unlocks
the list when the task is completed.

call loopunlock (p,err);

IMPLEMENTATION

loopunlock:

err

segdef
segref
save
eapbp
eapbp
lda
cmpa
tnz
stz
return

ldaq
ldb
ldi
staq
lreg
tra
end

loopunlock
processdata,processid

ap(2,*
bp 0,*
bpiO be sure process unlockin~ list
processid was process that locked 1t
err
bpfO unlock list

bpl4,*
spl 16,*
spt 21
SPI20
sp18
SPI 2,0,*

logic error

