
• j

,r

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

SECTION BGo3.02 PAGE 1

Published: 05/24/67

Segment Control~ The User Interface Module
R. c. Daley~ M~ R. Thompson

Purpose

The user interface module of se~ment control consists
entirely of unprivileged primit1ves designed for both
system programs and the general user. These primitives
perform service functions relating to segments which are
already known to the process.

Introduction

In order to use a primitive of the user interface module~
the segment to which the primitive refers must already
be known to the process. In all calls to the user interface
module the related segment is specified by a pointer (ITS
pair) to a location within the segment. The segment number
is extracted from the ITS pair and used to locate the
KST entry corresponding to the segment. If the specified
segment is not current1y known to the process~ an error
is reflected to the calling program by setting the errcode
parameter to the error number.

Primitives

All of the primitives of the user interface module are
unprivileged and are available to both system programs
and the general user. The following is a list of the
primitives of the user interface module and is followed
by a detailed discussion of each primitive:

1. uim$read_seg
2. write seg
3. uim$free core
4. uim$truncate_seg
5. uim$core test
6. uim$checK access
7. check_ring

1. u im~read seq

The following call is provided by which a process may
declare that a portion of a segment is to be needed shortly.

.r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.02 PAGE 2

ca 11 u im$read_seg (addpt r, nwords, e rrcode);

In this call, addptr is a pointer to the first location
of a block of core of size nwords. Segment control reserves
the right to completely ignore this call. However, if
the call is not ignored, a utility routine (getastentry)
is called to locate (or create if not found) the AST entry
for the specified segment. Once the AST entry is found,
a page control primitive (pcreadseg) is called to start
reading in any pages which fall within the specified area
and which are not already in core.

2. write seg

There is no descriptor setting which allows writing (appending)
but not reading. The following call is provided to accomplish
the writing (appending) for a process which has write
(append) permit but does not have read permit.

call write_seg(addptr,array,nwords,errcode);

In this call ~9d~~r is the pointer to the address of the
first word to wfl ch the write is directed, and nwords
is the count of the number of words to be written ¥rom
£l!!"s~·

The effective mode is checked to determine if the write seg
is valid. If it is valid, the specified number of words
from array is copied into the segment.

This call is intended for the use of the file system
interface module (see section BF.4).

3. uim$free core

The following call is provided by which a process may declare
that part of a segment is no longer needed at this time.

call uim$free_core(addptr,nwords,errcode);

Agai~, addp!! specifies the beginning of an area of core
of s1ze nwords. Segment control reserves the right to
completely lgnore this call. However, if the call is
not ignored, a utility routine (searchast) is called to
search the AST to determine if the segment is active.
If no AST entry is found, or if the segment is currently

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.02 PAGE 3

active but unloaded~ no further action is taken and control
is returned to the calling program. If the segment is
loaded, and the current process is the only process listed
as an active user of the segment~ a call is made to a
page control primitive (pcfreecore) to begin removing
any pages which reside entirely within the specified area.

4. uim$truncate seq

To truncate a segment to a shorter length by discarding
information at the end~ the following call is provided.

call u im$truncate_seg (addpt r ~ errcode);

In this call, addptr is a pointer to the first word to
be discarded. Upon receiving this call, two utility routines
(getastentry and getloaded) are called in succession to
insure that the segment is active and loaded. A call
is then made to a page control primitive to truncate the
segment. Use of this call requires the write permission
in the ring of the calling program.

s. uim$core test

To determine if a specified area within a segment is currently
in core~ the following call is provided~

percent = uim$core_test(addptr~nwords~errcode);
Again~ addltr specifies the first location of an area
of nwords h length. Upon return from this call, the
percentage of the specified area which is currently in
core is returned as the value of percent. The percentage
is returned as an integer from zero to one hundred.

Upon receiving this call~ a utility routine {searchast)
is called to search the AST for an entry for the specified
segment. If no entry is found or if the segment is unloaded1
the percehtage returned is zero. If the segment is currently
loaded, the percentage is found by calling a page contrql
primitive pctestcore. ·

6. uim$check access

To obtain the effective access rights to a specified segment
with respect to a given protection ring~ the following call
is provided

mode = uim$check_access(addptr, ringno~errcode);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.,3.02 PAGE 4

In this call. seghtr specifies a segment and rinano specifies
the ring for whic the access rights are compute • Upon
return from this call. the access rights are returned .
as an effective mode (REWA) which is computed in the following
way.

, .
2.

If rin~no is higher (less privileged) than the
segmen access bracket. all attributes are OFF.

If ringno is within or below the access bracket.
the attributes are set with the effective mode.
(It is assumed here that the caller ·is interested
in determining the effective access rights and
is not concerned about whether or not an attempt
to execute a segment results in a ring crossing.)

7. check ring

Whenever arguments are passed by inter-ring calls. care
must be taken to be sure that any access the called procedure
makes to the arguments is permitted in the ring from which
the call took place. The most important illustration
of this necessity occurs when an outer-ring procedure
calls an inner ring procedure which writes into its argument.
Then if the argument. accidentally or otherwise. happens
to point to some important system data base which is w"ritable
in the inner ring. and if no precautions are taken. the
inner ring procedure will change the data base in some
unexpected way; the results are likely to be catastrophic.

In order to check whether a given set of segments is
accessible from a specified ring. the following call is
available. ·

call check_ring(segptrarray. ringno. errcode);

Here se¥ptrarray is an array of pointers (ITS pairs) and
ringno s the number of a ring. The procedure check_ring
aetermines whether each segment specified by segptrarray
can be accessed from ring number ringno (that is. whether
the upper bound of the access bracket of each such segment
equals or exceeds rin¥no). If so. then errcode is set
to zero. If not. or f some of the segments do not exist
in the process. then errcode is set to non-zero.

