
~~

MULTICS SYSTEM-PROGRAMMERS"" ~NUAL

Identification

SECTION BG.3.04 PAGE 1

Published: 05/24/67

S ~gment Contro 1, The Segment Uti 1i ty Module
R.C. Daley, D.M. Ritchie

Purpose

The segment utility module of segment control contains
several primitives for use in manipulating the active
segment' table (AST) and the kno.Nn segment· table (KST).
A 11 of these primitives are privileged to modules of the
hardcore supervisor and are provided for the exclusive
use of segment control modules.

Primitives

The. following is a list of the primitives of the segment
utility module and is followed by a detailed discussion
of each primitive.

1 • suntJ sea rchas t s. suntl ns rchks t

2. getastentry 6. su~ idsrchkst

3. getastentry~delastentry 7. alloc_sst

4. maketrai ler 8. alloc_sst~free_sst

1 • searchast

To find an entry in the AST with a specified unique identifier
the following call is provided.

call sum$searchast(id,found,hsi,astep,errcode)s

In this call, 1S is the unique identifier of the desired
AST entry and found is a switch to be set upon return
to the calling program indicating whether or not the specified
entry is in the AST. If the desired AST entry is found,
fou~~ is set ON, the index within the hash table (see

at wt'!ich the entry was found is returned as the ·
value of hsi and a pointer to the AST entry is returned
as the value of dstep. If the desired entry is not found
in the AST1 foun is set OFF and an index within the hash
table at wnich the entry may subsequently be created is
returned as the value of h!l.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.04 PAGE 2

If searchast finds the AST entry, it leaves it locked
upon return. If any use is to be made of ~ (for example,
to create or delete the entry) the hash table must be
locked before calling searchast and not unlocked until
hsi is no longer needed.

2. getastentry

To find an AST entry with a specified unique identifier
or create the entry if not found, the following call is
provided.

I

astep = ~etastentry (kstep, did);

In this call, kstep is a pointer to the KST entry defining
the desired segment and did is the identification of a
device to Which the segment is to be moved. If did is
zero, no segment moving is specifically requestea-by the
caller. A pointer to the desired AST entry is returned
to the caller as the value of astep.

Upon receiving this call, another utility routine (searchast)
is called to search the AST for the desired entry. If
the desired entry is found, a check is made to see if
the entry is currently included on the list of candidates

,....., for removal and if it is, the entry is removed from the
1 is t.

If the desired AST entry is not found in the AST, getastentry
must activate the directory segment superior to the segment
specified by kstep. A pointer to this directory is found
in the KST entry and ~etastentry calls itself with this
pointer and a device 1dentifier of zero. Upon normal
return from this call, a new AST entry is created for
the originally specified segment. The necessary information
is obtained from the branch of the segment by calling
a directory control primitive (activinfo~rdbranch).

Whether or not an AST entry had to be created, did is
checked; if it is non-zero, and the segment is not already
being moved, a call is made to a primitive of multilevel
move control (move_advice) to determine whether the move
is wise. If not, no moving is done, but if so, an additional
active file trailer (AFT) is appended to the AST entry
to prepare the segment to be moved.

An AST created by this procedure represents an active
but unloaded segment. The decision as to whether or not
the segment should subsequently be loaded is left to the
caller of getastentry.

MULTICS:' SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.04 PAGE 3

Upon return, the AST entry discovered or created by getastentry
is locked.

I,

j. delastentry

To deactivate a segment by deleting its corresponding
entry from the AST, the following call is provided.

call getastentry~delastentry(uid, errcode);

In this call, ..Y.!4 is the uniClUe identifier of the segment
whose AST entry lS to be de·leted. ·

Th~ count of t~e; n'umber of inferior active segments must
be zero in the specified AST entry, i.e., the segment
must be a terminal node in the hierarchy.

When this call is received, the segment may be loaded
as well as being active. If this is the case, the segment
must first be unloaded by calling a primitive of page
control (pcfreecore) to remove any pages of the segment
which are currently in core. Upon return from this call,
the segment is unloaded since page control always unloads
a segment when removing the last page from core.

,,-.... Once the segment is unloaded, the branch associated with
the segment. is updated with information in the AST entry
by calling a directory control primitive (activinfo~wrbranch).
Upon return from this call, the AST entry is deleted by
delastentry and control is returned to the calling program.

When delastentry is called, the AST entry of the segment
being deleted and the AST entry of its immediate superior
in tne hierarchy must be locked. On return from delastentry,
the parent AST entry is still locked.

4. maketrai ler

To create a process trailer for an AST entry, the following
call is provided.

call maketrai ler (segno, astep):

Here segno is the segment number in the current process
of the segment for which the trailer is being made, and
astep is a pointer to the AST entry for the segment.

MULTICS' SYSTEM-PROGRAMMER$' MANUAL SECTION BG.3.04 PAGE 4 _., . ~

r, This routine calls airoo}~/~st to get space in which to
. create the trailer, plq:¢es segno and astep in the proper
~pots, and establishes ''in the trailer a pointer to the
PST entry for this process. The trailer is then threaded
into the linked list of trailers attached to this AST
entry, and into the list of trailers attached to this ·
PST entry (see BG.2).

,,........

The AST entry must be locked when maketrailer is called,
and it will remain locked on return.

s. surrflnsrcbkst

To search the KST for an entry containing a specified
symbolic segment name, the following call is provided.

call su~nsrchkst(name, found, hsi, segno, kstep, errcode);

In this call, name is the segment name of the desired
KST entry and found is a switch to be set upon return
to the calling program indicating whether or not the desired
entry is in the KST. If the desired entry is found, found
is set ON, the index within the hash table (see BG.2)
at which the entry was found is returned as the value
of hsi, the segment number corresponding to the KST entry
is returned as the value of seglo and a pointer to the
KST entry is returned as the va ue of kstep. If the desired
entry is not found in the KST, found is set OFF and an
index within the hash table at which the entry may subsequently
be created is returned as the value of hsi. -
6. sum$ idsrchkst

To search the KST for an entry containing a specified
unique identifier, the following call is provided,.

call su~idsrchkst(id, found, hsi, segno, kstep, errcode);

In this call,~ is the unique identifier of the desired
KST entry. The remaining parameters are as defined for
the previous call (nsrchkst).

Note so that the KST is a per process table, so that locks
are not necessary in accessing it; in particular, the
care needed in managing the hash table lock in calling
searchast need not be taken for idsrchkst and nsrchkst.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.04 PAGE 5

In order to obtain space in which to create an SST entry,
the following call is provided.

call alloc_sst (code, ptr, errcode);

Here code is a number indicating for what type of entry
space-rs-desired:

if code = 1 space wanted for AST entry

2 AFT trailer

3 process trailer

4 DST entry

5 PST entry

6 special segment list·

Upon return, ptr contains a pointer to the base of the
allocated space.

~, This routine tries first to obtain the needed space from
the free storage area of the SST; if this is insufficient,
it finds the AST entry at the top of the removal 1 ist,
calls delastentry to return it to free storage, and tries
again to allocate the desired space.

Except for a special segment list, the size of each structure
that may be specified is fixed. The size of a special
segment list is contained in the PST entry for the process
doing the allocating, so the PST entry must be created
first. ·

a. alloc_sst~free_sst

To return an SST structure to the free storage area, the
following call is provided.

call alloc_sst~free_sst(code, ptr, errcode);

Here code specifies a type of SST entry, exactly as in
the discussion of alloc_sst, and~ points to the base
of the area being freed.

