
MULTICS SYSTEM-PROGRAMMERS' MANUAL

1 dent i f i ca t I on

Core Control
Peter G. Neumann and Mary R. Wagner

eurpose

Section BG.6.00 PAGE 1

PUBLISHED: 6/7/67
Minor Revision
Supersedes BG.6.00

6/6/66

Core control Is the module which receives requests to assign and
~nassign core. It acts In accordance with the present occupancy
of core and with the nature of the request. It maintains
Information about the use of core in the core map (Section ~G.S).

Introduction

Core control maintains information on the availability of each
(64-word) block of core and how this block is being used. This
Information Is kept in the core map, described in Section BG.S.
(It Is assumed that the reader has read. Section BG.S
particularly the Introduction - since definitions of the basic
concepts of core m~nagement are given there.)

Core control Is called to assign groups (contiguous· core
locations which are treated as single entities). · An assigned
group is of one of three types: It may contain a hyperpage
(contiguous pages in contiguous core locations), a page table, or
an ent·l re unpaged segment. In genera 1, a 11 groups are requested
by page control (Section BG.4). The only other modules to call
core control are the lnltlalizer and the reconfigurer.

Section BG.6.00 contains the primitives of core control, an
overview of the design and a sketch of the flow of control. The
detailed design is describerl in Sections BG.6.01 through BG.6.06.

Pages and hyperpages

(The contents of this and the next paragraph should ultimately
appear in Section BG.4, If at all. They are provided here only
for background.) The hardware of the GE 645 provides pages of *
two sizes, hereafter referred to as sma11 pages and large pages,
whose sizes are 64 words and 1024 words, respectively. There are
arguments In favor of the use of ea.ch page size. The small pages
provide greater variety as to what may be In core at any one time
than do large pages. The large pages on the other hand are
required in order to page segments of size larger than 16K
(K=l024), since the hardware permits a paged segment to have at
most 256 pages. In addition, large pages may tend to reduce the
amount of hardware address computation by better utilizing the

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.6.00 PAGE 2

available· associative memory, although this is decidedly a
secorid-order effect.

In Multics, the hyperpage (and not the page) is the unit of
information which is transported (i.e., removed from core onto
secondary or ~estored to core from secondary). The hyperpage
size of a given segment may greatly Influence the efficiency of
the system with respect to transportation overhead, and its
choice is far more critical than the page size. On one hand, it
is clear that the transportation of small hyperpages (e.g., 64
words) may result in a large overhead because of the large number
of requests for the transportation of hyper pages (e. g.,
missing-page faults and page removals). On the other hand, the
transportation of large hyperpages may result in a large overhead
because of the high volume of information transported, much of it
unnecessarily). A compromise is obviously in order, although it
must be able to vary with the circumstances. Thus the hyperpag~
size is chosen on a per-segment basis by the file system, and is
essentially independent of the page size •

.frimjtjyes

The basic primitives of core control are assign, unassign,
groups tat and ooolsJ ze. They are all prl vlleged to segment
control and page control. (Certain other ~rlmitl~es reqUired
only for Initialization and reconflguratlon are omitted here.)
Thes.e primitives have the following basic purposes.

1. assign: Assign a group of specified size, type, status,
etc., and return the absolute locatl on of the assigned group
to the ca 11 er.

2. unassign: Unassign the group with the specified location.

3. grouosta·t: Change either or both switches constituting the
sta'tus .of the group with specified location. The original
status is returned to the caller.

4. ooolsize: Change the size of the specified core pool.

The detailed structure of the arguments and a further description
of each primitive is given below.

assjgn

loc=asslgn(atype,size,~tatus,pagsiz,pageno,pool,
descr,proc,sstptr,thresholdno,retopt,nsrtn,code);

The primitive t() assign a· group has the following arguments.

de 1 · loc bIt (18),
· atype bit (2),

size fixed-bin (17),

,:,,,: .. :

: t '': ..

. . ·~ . : .·

I . ~

J

MULT(CS SYSTEM-PROGRAMMERS' MANUAL Section BG.6.00 PAGE 4

.u,nassign

call unassign(loc,ifstat,nsrtn,code);

The primitive to unassign an assigned group with given location
has the following arguments.

del loc bit (18),
ifstat bit (2),
nsrtn label,
code fixed bin (17);

ifstat consists of the ifwired switch and the iflatched switch,
from 1 eft to right. A group is unassigned if and on 1 y if each of
these two switches is at least as large numerically as the
corresponding wired or latcbd switch In the core map. That Is,
unassign ifstat=11 means unassign even If the group is wired and
latched; unassign ifstat=OO means unassign only if the group is
unwired and unlatched; similarly, unassign ifstat=10, for
example, means unassign even if the group is wired but then only
if it is unlatched. ifstat=11 thus acts as an unconditional
unassign. If the group cannot be unassigned because of a
conflict in its status, a nonstandard return i~ given. The cases
covered by ~ for the nonstandard return to nsrtn are as
follows.

1. group wired
2. group latched·
3. group not assigned
4. no group begi'ns at this location
5. location not known

groupsta t

oldstat=troupstat(loc,changestat,newstat,sstptr,proc,
· nsrtn, code)

The primitive to change the status of a group with given location
has the following ~rguments.

del oldstat bit (2), ··
loc bit (18),
changestat bit (2),
newstat bit (2),
ss tptr· ptr,
pr oc b f t (1 >,
nsrtn label,
code fixed bin (17);

changestat consists of two bits, frofTI left to right changew and
changel. Similarly, newst@t consists of two bits, from l~ft to
right ~ and ~. For each 1 1 1 in changes tat, the
corresponding bit in the status is set tp the corresponding bit

MULTICS SYSTEM-PROGRAMMERS' MANUAl Section BG.6.00 PAGE 5

in news tat. If changew=l, the wired switch in the group map
en try for the group at location ~ Is set to the va 1 ue gl ven by
~· If changew=O, the wired switch remaIns unchanged. If
changel=l, the latched switch in the group map entry for the
group is set to the value given by ru:t!l. If changel=O, the
latched switch remains unchanged. The original value of the
status before the call is returned as oldstat, again in the order
wired, latched. Note that the ~resent status may be obtained by
using the groupstat call with cbangestat=OO. lf·sstptr is null,
both it and .P.f..Q.k are ignored. Otherwise, the values of sstptr
and~ replace the values of the corresponding core map
variables. The cases covered by ~·for the nonstandard return
to nsrto are as follows~

1. group not assigned
2. no group begins at this location
3. location not known
~. change of status not permitted

cool size

call poolsize(poolno,pslze,nsrtn,code);

This primitive has not yet been ~pecified.

Lists .arui pools

Various lists are threaded through the group map by means of the
pointer in each group map entry. There is a list of all free
groups, the totality of these free groups forming the~ ..QQ.Q.l.
Each free group is available for immediate reassignment.· There
is also at least one list of reassignable groups containing
hyperpages, i.e., groups which are eligible for removal of their
contents. Each such eligible 1i st contains groups forming an
e]iglble .P.Q.Q.J.. To.which eligible pool a reassignable hyperpage
group belongs is specified by t.he item .PQ2J. in the group map
entry. Initially there is only one eligible pool, with .Q2Q..]_=O.
(This is sufficient for.normal operation. Other eligible pools
will be available when system resource management· (Sect1on BT)
and page control get around to figuring out how and when to use
them. At that point, a primitive to alter the maximum pool size
will be added to core control. The multiplicity of eligible
pools may be useful in implerl'lenting certain classes of
"guaranteed'' service.) Each group In an eligible pool is
available in the sense that its contents may be removed by
calling page control, then unassigned by a back call from page
control when re~oval is complete, and then reassigned. The
hyperpages ln an eligible list are kept in order of decreaslng
eligibility (within each list) for removal. Each eligible list
is periodically reordered by the ranker on the basis of the use
bits in the appropriate page tables. Newly assigned. groups are
added to the end of the eligible list indicated by the argument
.QQ.QJ.. in the assign call. \'Jhen it is deemed desirable to remove
the contents of some group on a given eligible list, the gro~p at

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.6.00 PAGE 6

the beginning of the list is chosen.

The modules s.ruf. .tb..e_·.f.l.ru1 of control

The six basic functional modules of core control are the
cartologer, the allocator, the replenisher, the contiguator, the
ranker and the parametizers. Their functions are as follows.
The cartologer contains the entry points for all core control·
primitives, and governs the flow of control within core. control.
It is named for .its map managing characteristics. The allocator
attempts to satisfy requests for core space by assigning free
groups when desirable or possible. The replenisher and the
contiguator (collectively the removal modules) determine which
groups should have their contents removed from core, whenever the
need arises. The removal of the contents of a group is initiated
by calling page ·control, which actually accomplishes the removal.
In particular, the replenisher attempts· to compensate for the
loss from the free pool resulting from allocation from that pool.
The contiguator, on the other hand, attempts to satisfy a given
request which either cannot or may not be satisfied out of the
free pool. It does so by a combination of using free groups and
removing the contents of eligible groups.

Associated with the cartologer, the allocator and the contiguator
are several submodules. These are the splltter, the coalescer,
the waitlister and the waker. The splitter (functiona}ly"a part
of the allocator) breaks up a free group when required, and
returns the surplus to the free pool. The coalescer combines
adjacent unassigned groups as desired. The waitlister maintains
the l'Ulll :.ll.s..t., which Indicates which partially satisfied requests
are wafting for. completion. It sets up. an event whereby the
process can be reawakened, and calls the file system wait m0dule
(see Section BG.15.01). The waker scans the wait list ~fter
unassign and status calls to see .if a partially satisfled request
is now complete. If so, it calls the file system notify module
(Section BG.lS.Ol), which in turn causes all process waiting for
the given event to be scheduled.

The remaining two modules of core control are logically
Independent of the above four. The ranker keeps the order of the
eligible list for each reassignable hyperpage pool (that is the
order of eliglbility for removal) reasonably related to actual
use. Finally, the parametizers observe the various parameters of
core control and the ways in which these parameters influence the
behavior of· the system. The parametizers are capable of
adjusting these parameters dynamically.

Tl)roughout the design of ·core control, algorithm-dependent
modules have been identift.ed and isolated as much as possible.
In this way it is possible to modify the algorithms or to replace
an algorithm~dependent module with another module. The
allocator-, the splitter, the coalescer, the waitlister, the
waker, the ranker and the parametizers are all such entities.

I
I

I
I

I
I

i

I

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section BG.6.00 PAGE 7

Similarly, th~ contlguator ind the replenisher ~re also. Any one
of these modules may be modified or replaced, as desired.

For the assign primitive, the flow of control Is. somewhat as
follows. The ·cartploger receives tile call, strips off the
arguments, and invpkes the allocator. The allocator determines
whether or not tt is desirable to satisfy th~ request by
rea$signing a free group or groups, based on various allocation
parameters and bh the priority of the· request . implicit In the
threSbols:J 'argument. If It is des.irable, an a~tempt Is made . to
obtain the nece~sary free group. The allocator attempts to find
the smallest group of adequate size, spllttl.ng it if necessary,
and returning the surplus {if any) to the free pool. If this
attempt 1s successful and the rep~entsh option of retoQt is 1,
the repl ent sher Is Invoked. · The replE!ni sher. determines whether
or .not it. is deslr~ble to remove hyper_pages in order to
com~ensate fot tile loss of the newly assigned group from the free
poo 1. It does so on the bas Is of the rep 1 en t sher parameters; In.
par tlcu 1 ar, the !.22f.. and the floor, wh t ch are the· des ired ·. upper
and fower 1 imi ts for the amount of free core. · If It . Is
desl~abl~, the replenisher decides which groups' content~ to
remove. For each hyper page to be· removed, page· contro 1 Is ca 11 ed
to rem.ove l ts contents fr001 core. Page control returns
lmmedlately, with the return specifying one rif three ~ltuattons.
First, the group may be. unassigned directly (made free), as· for
example· t n the case of pure procedure which need not be · removed
before unassignment. Second, the group's contents are. going ·to
be removed by .page control (whence the group .may have . i.ts type
changed to eyacuat~d); a back ca 11 from page control · {ynass t gn)
will si'gna 1 remova 1 la t which t lme the group may be made .fJ:J:JtL
Th.ttd, this group is not avatlable for removal at th.is time (ln
which case the rep lent sher most. 1 i ke.l y will try .. another group).
~'lhether qr not the rP.pl enl sher. causes any . hyper pages to be
removed,_ control ls then returned ·to the ca1ler, ;along wlth the
location of. the assIgned _group. · · ·

If on the other hand the attempt to obtain the necessary free
group falls·, there are still several possibilities. First, lf
the bloc:'k option of retopt is 1, the waitlister Is. calleci to
enter this process Into the wattllst, preparatory to a future
blocking by ,page control. Next, if the contiguate option of
retppt is 1, the contiguator is called. The contlguator· first
decides whether or not It ls desirable. to a.ttempt 'to satisfy the
request at this time. If 50, the cont1guator determines which
groups • c:ontents shou 1 d be removed. It then makes an approprIate . ·.
entry in the coalesce list, tnd1cattng the size •nd location of
the desired group. fhe contlguator then successively calls page
control to r~111ove each desl red hyperpage from core.. Page control
returns, specifying one of the three. · st tuatl ons . noted above .•
First, the group may be ·unassigned directly (made reserved).
Second, the group's contents are going to be removed (whence the
group may have Its type changed to evicted>'; .a back call
Cunas~Jgo> wi 11 signal removal Cat which time the group may b.e
made res~rved>. Or third, try elsewhere. Finally, return is

MUL Tl CS SYSTEM-PROGRAMMERS 1 MANUAL S ec t i on B G • 6 • 0 0 PAGE 8

made, via nsrtn, with ~he error code "group is not immediately
available 11 •

Subsequent to each call to page control to remove the contents of
a group is a later back call (unassign) from page control to core
control, announcing the availability ~f that group. This call
occurs within whfchever process is running at the time, i.e., not
necessarily within the originating process. If the group to be
unassigned is of type evacuated, its type becomes ~. If it is.
of type evicted, its type becomes reserved. On the other hand,
an unass i gn ca 11 may originate from segment control or from page
control (e.g., the unassigning of an unpaged segmment after its
removal, or the unassigning of a page table after the unload1ng
of a segment). ln. these cases the group becomes fr~e
immediately. In any event, the coalescer (running under the
process in control) coalesces the unassigned group as desired.
If the group is reserved, the coalesce list (established
previously by the contiguator) indicates how this unassigned
group fits in to a larger group being established. The group
retains the type reserved while being coalesced with immediately
neighboring groups, as indicated by the coalese list, until the
coalesced gtoup of desired size has finally been established. At
this point the coalesced group in the reserved pool is added to
the free pool. The purpose of the reserved pool is of course to
be able to guarantee when n-eces-sary that sma 11 parts of the
would-be large group do not get gobbled up before they can be·
coalesced into the desired group. Following transferral of the
coalesced group to the free pool, the waker is invoked~ The
waker examines the waiting list of unsatisfied requests. If at
least one process is waiting for a free group of the gi'ven size,
or smaller, the cartologer calls the notify module (see Section
BG.lS.Ol). As a result, all processes waiting for that
particular event type reschedule themselves. At a later time,
when such a process comes unblocked (c~ u.), it invokes the~· y.
1 a ter allocator. Thus the schedu 1 er or schedu 1 ers in effect
determine the order in which processes are actually assigned
groups which have in this way been unassigned. Note that there
is no explic1t correspondence between the group or groups which
were removed by the original process and the group which is
u 1 t i rna te 1 y ass l gned to that process. Note further that a 1 though
the coalesce list guarantees the way in which a group may be
established out of unassigned groups (when this approach is
desired), the existence of this list in no way affects wh1ch
process may ultimately obtain the established group.
Incidentally, unless the roof is suitably large, the coalesced
group may be split by the allocator satisfying other requests
before a process requiring that group can get to it. For this
reason, t~mporary raising of the roof is desirable. (If the
coalesced group has been split prematurely, the entire
allocator-contiguator c~cle is repeated.)

Each algorithmic module is given a facility whereby its
parameters may be controlled external to the algorithm, wherever
this is meaningful. Each such module thus has an associated

i
:!

. I

I
I
I ,

I
\

I

I
I
I
!

t-~Ul Tl CS SYSTEM-PROGRAMMERS 1 MANUAL Section BG.6.00 PAGE 9

module wh 1 ch observes and adjusts the parameters of that .. module
on the basts of current and past acttvlty. These modules are
called 0arametlzer3, and are themselves replaceable~ They
provide a simple mean·s for experimenting with system performance
without having to alter the modules themselves. The paramettzers
may be dummied initially, with all parameters remaining constant
as a result. The parametizers are thus capable of growing with
the system, as are the algorithmic modules themselves. Note that
each existing parametlzer must be invoked occasionally, even If
the parameters indicate that the associated module need not be
called. Otherwise~ a parametizer could effectively tune its
module out of existence. The paramettzers may dynamically
control the roof, the thresholds, the amount of core which may be
latched at any one time (to prevent total latching), the coalesce
strategy, and how often to call the ranker.- How often· to. call
the parametizers themselves must of course not be left entirely
to the parametlzers.

As an example, c~nsider the par~metizer for the allocator. The
initially Implemented version may return Immediately to the
caller without dolrtg anything. That Is, the actual values of the
thresholds and any other allocation parameters remain constant.
Subsequent versi6ns might use various algorithms for ~djusttng
the thresholds. The ultimate version of this parametlzer ts
speculative at this time, and may provide considerable amusement
to Multics-watchers. Similarly, the parametlzer for ·the
replenisher may adjust the roof.

The detailed specifications of the
contairted In the following sections.
follows •

BG.6.01 - The cartologer
aG.6.02- The alloc~tor
Rn.6.03 - The replenisher
BG.6.04 - The contlguator
BG.s~os - The ranker
BG.6.06 - The parametizers

core contra 1
These are

modules- are
organized as

