
7 MULTICS SYSTEM-PROGRAMt~ERS 1 MANUAL SECTION BH.O PAGE 1

Published: 08/18/66

Identification

Summary of the Backup and Multilevel Storage Management System
Gerald F .. Clancy

Purpose

This section summarizes the program structure of those pro­
cedures and processes that perform the backup and multilevel
functions. Operational goals are presented when they
relate to issues affec~ing Multics performance or user
related interfaces. It is suggested that section BG of
this manual be read before section BH since many concepts
alluded to herein are explained.within the basic file
system documentation.

Introduction

The backup and multilevel system is that part of the Multics
file system which manages the use and provides for the
reliability of the secondary storage system~ Most efficient
use of storage is accomplished by moving segments to physical
devices whose access speed is commensurate with the segments'
relative rate of activity. High storage reliability is
provided by the periodic and asynchronous copying of nev11
data placed on secondary storage onto some detachable
and preservable medium.

Multilevel

The functions of the backup and multilevel system can,
for the purpose of exposition, be segregated into the
set of tasks performed by the multilevel storage management
system and those performed by the backup system. Multilevel's
domain of activity is the hierarchy of storage:devices
known to the file system. This hierarchy is constructed
by placing the fastest devices at the top with successively
slower devices ordered below. Slow, detachable storage
remains at the bottom of the hierarchy and by its nature
provides the illusion of infinite overall capacity. Segments
residing on detachable storage remain known to the basic
file system until the'y are willfully deleted by a legitimate
user request. Detached segments must have once resided
on-line by the nature of the creation process. Therefore
unwillful disassociation of a file from the on-line storage
system can only result from device to device motion initiated.
by multilevel. Multilevel's prime objective is to dynamically

.distribute segments among available devices such that
a firm balance exists between the access speed of a segment's
residence and the access demand on the segment by system

MUL TICS SYS TH-1-PROGRAMMERS 1 t-1ANUAL SECTION BH.O PAGE 2

users. A well tuned system is one where the most used
data exists on the fastest possible device while segments
in less demand reside in appropriately slower storage.

Each segment activation attempted by the file system demands
that the segment access history be scrutinized by a multilevel
procedure. Authorization for the segment to be moved
to a faster or slower device is given if its history does
not meet the residence criterion of its current device.
If a move appears necessary~ however~ other influencing
factors may inhibit its initiation. Consideration must
be lent to availability of space on a new device~ size
of the segment, and transactor parameters reflecting the
user's desired access performance.

A reasonable balance between segments and devices can usually
be maintained by monitoring segment activity. Each segment's
access rate is counted by page control and the resulting
value permanently maintained and decayed with time within
the file branch. Each time a segment is activated by
segment control, a multilev~l procedure is invoked. The
activity value is then used to compute a residency factor
which is compared with the current criterion attached
to the present device and a move or don't move decision
reached. In this case the move is accomplished dynamically
by the basic file system as pages are read in and out
of core.

Hence much secondary storage management can be accomplished
as part of the user's own processes. Ho\fJever ~ there are
developments which can slowly or instantaneously upset
a finely balanced storage system. Many segments which
justifiably resided on a faster device sometJme in the
past may lie dormant for a long period. Therefore, their
activity value decreases to an impermissible level. Since
this condition arises because of zero activity, the basic
file system is powerless to remove them in lieu of more
active segments. Eventually~ the device itself approaches
saturation and its device interface module complains asking
for relief. The distress awakens a multilevel process
which is prepared to locate~ analyze and provide relief
to overcrowded devices.

The Device Relief Process

The contents of a distressed device can be thought of
as segments stratified by activity value. The following
diagram illustrates this.

. ,,-.
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 3

.. ----· ...
'·~-- - . ..

Segments 1»-

l::: .*'-!: .. Device ,_,,.

Decreasing Act ivity

r Value

~
+ - @ ~------Warning

...
- '-

Spring
Light

l
Figure .!_.

From this perspective, a storage device is a push-down
stack where inactive segments are forced to the "bottom"
by new or reactivated segments. Distress arises when
tension on the spring surpasses some preset safety value
or worse, when the spring will compress no more. Multilevel's
problem, then, is to determine how many bottom layers
of strata must be removed. Since no dynamic statistics
which plot volume vs. segment activity are available,
they must be compiled by scanning the file system hierarchy.

If the device has been crippled into uselessness, a guess
of the proper removal criteria is made from historical
data. All segments with activity less than the guess
value are removed to other devices. While thus ~iving
immediate relief, the needed statistics are comp1led in
case the first criteria was too small. If so, the correct
criteria is computed and another pass over tre device
effected. The guess algorithm need not be exhaustive
but may actually be a sampling procedure.

One statistic gathering pass over the hierar~hy produces
an overall and a per device plot of records occupied versus
activity values. Thus, multilevel can isolate:the exact
source of device overload, begin moving segments to relieve
this and immediately calculate the effect this motion
will have on other devices. Thus, a second overload of
another device might be averted.

Iteration of the above process continues until the overloaded
device is completely restored to normal. Whenever one
removal pass does not suffice, new material is probably
arriving faster than old segments are being removed.
Assuming that the removal criteria computation is recent,
the stratification obtained is probably still accurate
(the strata are in constant motion) or the entire device
is filling with very active segments. Recourse is possible
by making continuous cycles with a constantly increasing
removal criteria, thus preserving the status quo until
general system demand relaxes. Once a device is thoroughly

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 4

saturated no more segments can be created on that device
and it is kept from use until volume is reduced to a reasonable
working value.

Each finite secondary storage device is equipped with
a "false bottom" so that conditions of saturation may
be simulated. The "false bottom'' is usually equivalent
to the "real bottom" but a mechanism is provided so that
this floor may be artificially raised thereby reducing
the apparent capacity of a device. If the device is currently
operating within safe bounds of its warning thresholds
and the bottom is raised artificially, discomfort is thus ·
simulated and multilevel has no choice but to begin removal
of resident segments. This procedure is useful should
it be necessary to completely evacuate a device prior
to q system reconfiguration which is intended to remove
the device from service. By raising the floor so that
capacity equals zero, multilevel is invoked and evacuation.
begins. Eventually removal is complete and reconfiguration
can occur.

A new (empty) device inserted into the system during recon­
figuration is also a cause of some i~balance (but not
discomfort) of the ~ype mentioned above. It is felt that
this is a vacuous crisis and that the overall storage
system will quickly readjust itself regardless of where
the new device belongs in the storage hierarchy.

A major assumption in the foregoing discussion has been
that space always exists on the intended target device
to which a segment is to be moved. This is not a 1\-.rays
true by the following reasons:

1. A segment to be moved may not fit or ~ight force
the new device into discomfort. Movement is
not possible in this situation.

2. There may not be a next on-line device in the
hierarchy in the move direction.

An examination of a segment activity history on one device
·provides the move direction and distance up·or down the

hierarchy. A range of allowable values exists for each
device and is updated after the multilevel statist·ic gathering
process. It is not immediately clear what algorithm should
be used for this self teaching method but is expected
that reasonable values will be reached.

:s SYSTEM-PROGRAMMERS' MANUAL

cvice cp [
'"cp J

devicecp [

device~ J

Overlapping

ranges
of per­
missible
activity
~ .,
.--

·Figure ~·

SECTION BH.O PAGE 5

·Increasing

. activity

of overlapping activity ranges is shown in Figure 2 .

. vice hierarchy naturally terminates with some detachable
~medium which is the slowest device available and,
2 it is detachable, has the possibility of having

.:rge capacity. Hence, detachable storage is always
~ receive segment seepage from the on-line devices.
-~be emphasized that, although all storage devices
· to multilevel and to the user as a continuous hierarchy,
-~ic file system recognizes only the partial hierarchy
·line storage. This discontinuous structure is effectively

by the multilevel software so that no real distinction
~ noticed by the user when accessing a segment removed
deoths of detachable storaae. Fiaure·3 shows a

-~ic· representation of storage 'vvhen viewecl from the
~vel perspective. Squares are storage devices; the
-~hy spreads downward. Circles represent multilevel
~es which effect segment moves along allowable paths
:;_cated.

1oying one of the multilevel processes shown in
3, a segment can be moved from one device to any
For example, M3 is the process which moves segments

~ to all other devices as overcrowding occurs.
-the process which moves information exclusively
~ DL (detachable). Motion of this type represents
~ha~ism for retrieving files from detachable storage.
:·ocess is invoked automatically vvhen a user attempts
.renee a detached segment. Normally, however, the
: first told that such a retrieval is required to
~ his access request. Opportunity is then given
~bit or begin the operation.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O

fig\ .. .:ee 3 ;r

(~Ste si 1>~-vtce)

D3'

PAGE 6

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 7

The Backup System

The Multics backup system provides protection against the
unwillful destruction of any file known to the file system.
Such reliability is maintained through the services of
an ever-present daemon whose constant operation is assured.
In brief# backup is accomplish~d by the asynchronous copying
of all recently created or modified segments as they are
discovered within the file system. Copies are made in
duplicate on some form of detachable storage which can
be physically removed and externally safe-guarded against
pilferage and destruction. This daemon enjoys freedom
of the file system hierarchy and is therefore privileged
to travel, examine, and read most segments at its own
leisure. This standard backup daemon is, however, denied
access to those segments deemed highly secure. Backup
of this type of information is completed through the services
of another daemon which enjoys full security clearances.

Backup copies of segments are unknown and inaccessible to
users while those removed to detachable storage by multilevel
are completely known by the file system and are accessible
to the extent that their reference may cause them to be
moved up to on-line storage.

Incremental Dumoer

The act of copying file system data on some backup storage
medium is known as dumping. Preservation is accurate,
complete and guaranteed to last a long time. The retention

. time of this storage should be sufficiently long to meet
the requirements of any individual Multics establishment.
The actual dumping mechanism is a set of backup daemons
which search out and select for dumping only"that data
as yet undumped in its current version. Thus, the operation
of this process, known as the incremental dump~r, produces
a continuous stream of output which represents all modification
to any part of the on-line storage system. Since modification.
is forever occurring within an operating Multics, the
incremental dumper must be ever watchful and insure sufficient _--
passes over the hierarchy that all data is examined frequently
so that backup is current. In practice, the incremental

·dumper will enjoy an adequate scheduling priority such
that one pass will be completed within some time limit.
This limit is set externally in order that backup be current
to the system requirements.

Each directory entry has an associated date/time last
modified (maintained by the basic file system) and a

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 8

date/time last dumped (maintained by the backup daemon).
Since these dates apply to the entry's associated segment,
only a simple comparison is necessary to determine the
backup status of any on-line segment. Entries are examined
periodically and backup functiqns performed as required
so that total recoverability is both current and complete.
The fact that a particular segment has been renamed, deleted,
moved or replaced etc., is as worthy of remembrance in
backup storage as is modification to actual segment content.
Hence individual entries as well as segments are copied
by the incremental dumper.

If incremental dumping were carried out continuously from
the time Multics first arose and all backup storage generated
since were preserved, total recoverability from failure
would always be possible by scanning this total volume
of information and selectin~ and reloading only the most
current version of all entr1es and segments.

System Checkpoint Dumper

Obviously, if all incremental storage were preserved indefinitely,
all files that existed for some minimum time would be
preserved but the total reload procedure becomes prohibitive
as the age of the system increases. Instead, certain periodic
checkpoint measures executed at convenient intervals are
used to consolidate the current total vnlume of backup
storage that must be used to completely reload the on-line
portion of the file system. At least three major separate

·bodies of data seem to be important: a complete set of
necessary system files, accounting files, and one complete
hierarchy skeleton (copies of all entries of.all directories
but no other segments). The above items are a minimal
requirement which file system storage must hav~ before
Multics may operate in any normal fashion (with users).
If on-line storage were destroyed, it would be advantageous
to restore this information quickly and open the system
to general users in spite of the fact that most user segments
are not yet loaded. /

.Periodic checkpoint dumping of all necessary system files,
accounting files and the hierarchy skeleton provides recent
versions of this data. An optimum period is probably
between one or two days and a \IIJeek. A picture of the
processes of incremental and checkpoint dumping is as
follows:

Dumping
Rates

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 9

i
(Cycle Period)

... ,...
r--

r---
,---

r--- .

0 (Ch eckpoint)
I
I
I

i
I
I
I -- 1-
I

0 L
I

j
0

Figure ~·

I
j

I
I

I

I
I
I
j

I

TD
Time 2llo

(I ncremental)

This process produces a continuous volume of incremental
storage and a current latest checkpoint dump. If secondary
storage fails at time To , the brief reloading of all
incremental storage created after time TL and the checkpoint
data which began at TL will provide suff1cient on-line
information that the system may operate (in some fashion)
with users. After this is done and the system is brought
up, remaining segments can be restored by examining the
remaining incremental storage (created before TL) searching
for the latest version of each file.

User Checkpoint Dumper

Even though the addition of a system checkpoint dump
allows an early return to normal system operation a great
deal of effort is still required to scan all selectively
dumped files created since time zero.

A further checkpoint dump of all recently used segments
is necessary to relieve this burdensome and highly inefficient
search. Since the storage volume produced by a user
checkpoint is much larger than in a system checkpointp
its period of operation must be correspondingly greater.
The complete picture of all dumper output is as follows:

i
0

bO i r:: CJ)

•..4 Q)

~~
::JJX: 0 ~

i
0

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 10

I 0 ~ (User Checkpoint)

' I
I

(System Checkpoint)

0 Time TL
2

Figure 5.
Reloading

Selective storage contains all hierarchy modifications
since the beginning of the last system checkpoint dumper
execution. From this portion of incremental storage,

(Incremental)

only the latest copies of segments are selec~ed for loading.
In addition portions of the hierarchy skeleton which are
also the latest versions of any directory entr~es modified
are loaded. When this is done, certain portions of the
hierarchy exist and will inhibit the replacement of older
versions of the same_data. The latest system checkpoint
storage is loaded next. It contains one complete hierarchy
skeleton which can be completely loaded except for those
three entries previously loaded from incremental storage.
Once the skeleton is processed, it is known exactly which
version of every segment must be loaded to completely
restore secondary storage. This information was placed
in each branch the last time the corresponding segment
was last dumped. Therefore, following the skeleton reload,
the remaining portion of the system and user checkpoint
storage can be searched for exactly those segments which
must be loaded.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 11

If on-line storage is lost at time TL, then complete restoration
is achieved by loading the proper segments and directory
information contained in hatched areas 1, 2, 3 and 4 above.
Since information in 1 updates that in 2, 1 is loaded
first. When both 1 and 2 have been processed by the pre-Multics
reloader, the necessary system segments are present and
normal system operation can begin. Tren since 3 updates
4, 3 is loaded followed by 4. Hierarchy configuration
is now very nearly restored to its state preceding the
catastrophe. Some segments may have been by-passed by
the last user checkpoint because of their disuse, but
they may be retrieved individually from incremental storage
as needed by their owners.

More missing segments could be reloaded by searching the
next previous user checkpoint storage (area 5 in Figure
5) •. This is so since some unused files not dumped by
the latest user checkpoint may have been active in the
past and would exist on the next latest. However, the
time investment required to search such a great deal of
information i~ not commensurate with the relatively small
number of files that might be loaded. By avoiding this
portion of reloading, it will be noticed that the lowest
on-line device in the hierarchy becomes somewhat relieved
(compared to its previous state) and therefore a portion
of multilevel's func1ion is simulated. The presumption
is, of course, that the unused files resided on the lowest
on-line device and that a move-off was eminent.

Disposition of Backup Storage

Since the only utility of the checkpoint storage is in
anticipation of an on-line storage catastrophe, each time
a new user or system checkpoint is created, all earlier
versions are of value only if the latest version proves
to be unreadable. It therefore seems advisable to ahvays
save the last tvJo or three checkpoint dumps of both kinds
for such an eventuality. All others created previous
to these may be discarded in a manner compatible with
security regulations.

Since the complete body· of incremental storage contains
·all segments ever known to the file system and since those

segments moved to detachable storage by multilevel are
usually quite old then those segments that must be· removed
already exist within incremental storage. Thus, data
within multilevel's detached storage is merely a subset
of incremental storage and the need for off-line storage
known only to multi level is eliminated. ~-Jhenever a file
is to be removed, a simple check is made to insure that

' '

MULTICS SYSTEM-PROGRAMMERS.' MANUAL .SECTION BH.O PAGE 12

a current copy has been made by the incremental dumper.
If so 1 a truncation is done and no actual output is necessary.
If the pathological ~ase occurs and the desired copy does
not exist on permanent storage, an output request is issued
which will dump the file on any available permanent storage
and then truncate.

Some portions of selective storage must be preserved even
after it is no longer useful for backup purposes since
some segments have been removed from on-line storage and
hence are still knm'lln to the basic file system but reside
wholly off-line on detachable storage. However, all data
in selective storage need not be preserved and consolidation
can be done if all known segments are preserved by that
process.

Consolidation

In order to decrease the amount of incremental backup
storage accumulated, a consolidation system is provided
and is used by a system administrator whenever the cost
of storing voluminous amount of off-line storage is greater
than the machine time cost needed to perform the consolidation
operation.

Each copy of each segment dumped onto permanent backup
storage is provided with an absolute time limit beyond
which that copy will not be preserved by the consolidation
procedures. Thus, if the limit span is greater than the
consolidation execution frequency, then certain copies
of segments will eventually disappear from the backup
archives. \·}henever a segment is removed from· on-1 ine to
off-line storage by the multilevel rem0val mechanism a
record is kept remainding the consolidation system that
although the segment does not exist within secondary storage,
it is still known to the basic file system.

The act of consolidation is the copying of certain segment
copies from old to newly created backup storage. A given
copy will be transcribed in this way only if 1) it is
still known to the basic file system or 2) if its expiration
date has not yet arrived.· For all copies which are still
kno\llm to the basic file system and copied in this way,
the expiration date is rejuvenated by setting it to the
current time plus the retention time span.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 13

Dumping Techniq4~~

The file system hierarchy is organized much as a library
of segments~ As such, some data is naturally dedicated
to cataloguing the data segments and, therefore, there
are directory segments in addition to the users data segments.
Files are created, modified and deleted and these operations
are reflected in the directory segments so that the catalogue
information is always current. If the backup system maintains
an off-line copy of the entire file system, then all segments,
user and directory, must be preserved or dumped with sufficient
celerity to guarantee a minimum loss of information should
on-line storage fail. Directories are of special value
since they contain tables of information about ·other segments.
Since a very minor directory alteration would cause a
great deal of tedious processing in order to completely
backup a directory, a slightly modified viewpoint of the
file system hierarchy presents itself. Each user data
segment is located uniquely in the tree hierarchy prefixed
by a string of successively superior directory entries.
Directory entries themselves are distinct entities also
preceded by a similar string of entries. Thus attempts
are made not to backup entire segments but only data segments
and individual entries (pieces of directories). A backup
quanta (full logical record in backup storage) consists
of a preamble followed by a dumpee. The preamble is a
list of successively inferior directory branches which
uniquely position the dumpee in the hierarchy. The dumpee
is either a full segment or a single entry which must
be preserved for some reason. In many cases directory
entries themselves and not their associated data segments
are modified by users. For example, a renamed or deleted
branch or one whose access control list has changed is
worthy of backup's remembranc~, but dumping of the associated
data segment is not required. Therefore, entry modification
is detected by the incremental dumper and only a relatively
small amount of information is preserved. Only in rare
cases are preamble strings followed by an entire directory
content (usually when dumping the hierarchy skeleton).
A preamble has the property that (1) the nth entry in ·\
the string was ah"Jays extracted from the nth level in
the hierarchy and (2) all but the last item in the string
is necessarily a directory branch.

Summarv

To summarize, six ind.ependent multilevel and backup processes
have so far been described.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 14

1 0 A mu 1 t i 1 eve 1 process which scans the hierarchy
to relieve distressed devices.

seeking

2. A constantly operating incremental dumper

3. A periodic system checkpoint-dumper

4. A periodic user checkpoint dumper

s. A pre-Multics (Phase I) reloader

6. A Multics (Phase II) reloader

In addition, a multilevel procedure lies embedded within
the basic file system and is invoked as part of the user's
own process whenever a segment is activated. A terse
out line of each of the above fo 11 ows:

Multilevel Move Module

The multilevel move module resides ·within the basic file
system and determines the movement requirements of the
segment defined by the directory entry passed as an argument.
It is called both by the basic file system each time a
segment activate occurs and by the relief process. A
segment may be moved up or down within the device hierarchy
or left alone. An activity value for the segment is computed
from the rate of past access, the transactor priority
parameters, size of the segment and the current availability
of space on all on-line storage devices. This number
is then compared with the allowable limits for the present
device and if found incompatible, a new device is specified.
If a move seems necessary, indication is given to segment
control of which device will give optimum reference performance
for the segment's apparent usefulness.

The Multilevel Relief Process

A DIM whose device is becoming saturated, signals the
multilevel relief process telling that some preset volume
threshold has been reached. The relief process initiates

_a hierarchy scan whose mission is twofold: .

1. Using a past criterion, segments are moved fr9m the
distressed device to new homes thus giving a measure
of immediate relief.

2. Current statistics relating the usage of all system
devices are compiled so that a true picture of current
storage and segment activity can be measured.

\

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.O PAGE 15

When the first pass is complete, the effect of the moving
just done on overall storage balance is calculated. Measures
(another hierarchy pass) are then taken to apply relief
to the original device and perhaps adjust other storage
to prevent the relief of one device from upsetting another.

This process makes move decisions whi~h may require that
information be removed from on-line storage. A record -
is maintained within the file system hierarchy telling
exactly where in off-line storage the removed segments
may be found should a future move up (retrieve) be necessary.

Incremental Dumoer

The incremental dumper is kept in constant operation whenever
the Multics system is functioning. Its sole function ·
is t.o search out segments and directory entries that have
changed since their last dumpment. The entire hierarchy
tree is scanned and data destined for dumping is written
on some form of detachable backup storage. This storage
is saved indefinitely and may be consolidated when economical.

System Checkpoint Dumper

This process is run only periodically and performs a finite
task. A predefined set of system and accounting segments
and one complete hierarchy skeleton are dumped. The system
and accounting files are those files deemed necessary
to operate Multics in a normal fashion with users. The
skeleton is the set of all directory segments. System
checkpoint storage is discarded periodically as more current
versions are created.

User Checkpoint Dumper

This process runs periodically (probably with a greater
cycle time than that of the system checkpoint dumper).
It dumps all segments used or modified since its last
running time. A single hierarchy scan is executed with
file copies written on backup storage specifically alloted
to the user checkpoint dumper. User checkpoint storage
is discarded periodically as more current versions are
created.

Pre-Multics (Phase I) Reload

The pre-Multics reloader is used to begin restoration
of on-line secondary storage following a catastrophe.
Its prime objective is to recreate s-ufficient data within

,.. .
!

... -
MUL TICS S YS TEM-PROGR.l\t4MERS 1 MANUAL SECTION BH.O PAGE 16

·the file system hierarchy to allow normal Multics operation.
The skeleton is constructed in its most current form.
When thi·s is done, a complete record of all segments known
to the file system and their exact location in backup
storage is known. Then reloading necessary system and
accounting files allows at lea~t r-udimentary system operation.
The above data is collected by searching all incremental
storage created since the beginning of the last system
checkpoint for all latest modifications to the hierarchy
skeleton. Next, the copy of the skeleton itself is loaded
from the checkpoint such that all directories not already
present are loaded. The system checkpoint accounting
and system segments are then loaded since the exact copies
sought are known. Normal r~lultics operations can now begin.

Multics (Phase !I) Reload

The Multics reloader runs during normal system operation
and follows the Phase I reload. It reloads the latest
copies of all files found on incremental storage created
before the be~inning .of the last system checkpoint and
after the be~1nning of the last user checkpoint. Since
all sought f1les and their locations are known, the above
portions of backup storage are searched once and all required
files are placed on secondary storage. During Phase II,
user retrieval of segments not present is inhibited.

More

. Later continuations of this section will discuss:

1. The !/0 subsystem

2. Parallel processing of functions

3. The hierarchy scan mechanism

\

