
r 
I 

MULT ICS SYS TEM-PROGRM~MERS' t~ANUAL SECT ION BH. 4. 01 PAGE 1 

Published: 01/06/67 

Jdentification 

The Dumping 1/0 Process 
S. H. 1:-Jebber 

Purpose 

The dumping 1/0 process is a utility process incorporated 
into the backup system to 1 ) insure minimum waiting times 
caused by 1/0 activity and 2) handle the I/0 for several · 
dumping processes simultaneously (BH.2.00). 

The backup scheme includes multiple dumping processes 
to insure that with Multics expansion and~ under conditions 

. of extre~e system load~ adequate facilities are available 
for the dumping function .. With several dumping processes 
working simultaneously (distributing their work over several 
device processes) there will be a faster, more uniform 
scan of the system hierarchy which will allow for a more 
consistent set of backup tapes. 

This section describes the general configuration of this 
1/0 process relative to the dumping processes and includes 
a detailed description of the 1/0 queue used therein. 

Introduct io.n 

The dumping 1/0 process handles the 1/0 for all dumping 
processes. Communication between the I/O process and 
the dumping processes is done through an 1/0 queue. The 
1/0 queue is loaded by the routine ioroutine (common to 
all dumping processes) and unloaded by the I/O process 
itself. Communication between any one dumping process 
and the 1/0 process is synchronous in that the dumpin~ 
process cannot proceed until the I/0 process has examAned 
and begun to process the corresponding queue entry. On 
the other hand, the I/0 process appears to work asynchronously 
with respect to the 1/0 system, for it approaches the 
queue for a new entry to process after it has started 
the 1/0 for the previous entry of the queue. The various 
dumping processes load the queue at random times - the 
1/0 process must merely keep up with work given to it 
by the various dumping processes. (Note: The l/0 process 
cannot get ahead of the dumping processes due to the syn­
chronous behavior of the interaction.) 

The modular description of the interaction between the 
I/0 process and the dumping processes is depicted in figure 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.01 PAGE 2 

1. The several dumping processes make calls to ioroutine 
\"Jhenever appropriate. 

On the other side of the queue the l/0 process is blocked 
awaiting a wakeup signal from a dumping process. Upon 
awakening and finding an unprocessed entry it select~ 
an appropriate device and initiates the I/0 on that device. 
Several devices may be allocated to the I/0 process; it 
must find and use those that are presently available. 

Associated with each dumping process is a working directory 
for that process. In this directory are several buffers 
through which any data transferred to the I/0 process 
actually flow. The !/0 queue entry merely specifies which 
dumper (and consequently which buffers) is responsible 
for the I/0 request. 

There are 2 variables which are placed in each queue entry. 
These are 

1. The process identification of the dumping process making 
the request. This is used to wakeup the dumping process 
at a later time. And 

2. The dumper identification. The 11 dumper_id11 is a unique 
identifier of the dumping process. The numerical 
equivalent of the 11 dumper_id11 is used by the 1/0 process 
as an index into several of its internal tables. 

The directory name 1 of course, allows 1mambiguous 
access to the correct buffers to be associated with the 
request. All dumping processes are identical and hence 
corresponding buffer segments (immediately inferior to 
the dumper working directory) for different dumping 
processes all have the same name. These latter 
names (not path names) are known by the 1/0 process, and 
hence the only additional information needed in any one 
request is the directory name. (This path name is supplied 
at initialization time.) The path name of a buffer is 
formed by concatinating the dumping process directory 
path name with the buffer name. 

When a dumping process is initialized it calls the 1/0 
process at the following initialize entry point: 

where 

call init_dumper(path_name, dumper_id); 

del path_name char (1:)., 
dumper_id bit (36); app 1 ies. 



,. /"'""' 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.01 PAGE 3 

path_name is the directory path name of the v.Jork:i.ng directory 
for this dumping process. The 1/0 process then makes 
the buffer segments of this dumping process kno1rm to it 
and stores the segment numbe.rs in a table which it keeps . 
for it~ own reference. This table is indexed by the numerical 
value of ''dumper_id". The PL/1 declaration for this table 
is as follo~J<JS: 

de 1 ., table (max_proc), 
2 header_buffer ptr, 
2 preamble_buffer ptr, 
2 directory_buffer ptr; 

If chfx is a routine which converts the directory name 
(character) into its numerical value (fixed) then a typical 
reference to the header buffer of dumping process oroc 1 
would be: 

table (chfx(proc_1)).header_buffer -> ... 

The PL/1 declaration for the header buffer is as follows: 

del 1 header ctl (hp), 
2 pre_status bit (1), 
2 dir_status bit (1), 
2 trap_sw bit (1), 
2 tmtype bit (17), 
2 uid bit (70), 
2 dtm bit (72), 
2 table_name char (12), 
2 table_index char(6), 
2 n fixed bin (17), 
2 slot_no fixed bin (17), 
2 current_ln fixed bin (17), 
2 slot_name_ln fixed bin (17), 
2 slot_name char (hp -> header.slot_name_ln); 

The order in which backup tapes are referenced at reload 
time is specified in the ''reload 1 ist11 , a 1 ist of reel 
labels located in the tape header of each backup reel 
created. This "reload list" is described in BH.4.02. 

The next 3 sections will treat separately each of the 
follm"'ing subjects: the· l/0 queue, :toroutine (the queue 
loading procedure), and the dumping l/0 process. 

The Dumo:i.ng I/0 Queue 

The dumping 1/0 queue is a doubly threaded list of entries; 
that is, each allocation or entry in the queue must contain 
a forvJard and bad~\:vard pointer. The set of forvJard (backvJard) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.01 PAGE 4 

pointers within the queue then defines a continuous chain 
through the queue. There is 1 in addition~ a queue header 
which contains a lock for 1 ·pointers to the head and tail 
of, and the current size of (i.e. number of entries in) 
the queue. 

The queue is loaded by ioroutine and unloaded by the 1/0 
process. · The process which current 1 y uses iorout ine goes 
blocked for the time after it loads the queue and before 
the l/0 process can return the retrieval arguments. 

The lock used will be a 36 bit bit string set by the standard 
interlock mechanism (the STAC instruction). The process 
attempting to lbck is blocked if the queue is already 
locked. 

The first and last pointers for the queue must be self-relative 
pointers,each pointing to (probably) separate queue entries. 
If these pointers are zero then the list is empty. If 
they are equal 1 then the list has one entry in it. 

The current size of the queue is an integer which specifies 
how many separate entr.ies exist in the queue. This is 
used in scanning the queue for unprocessed entries and 
as a quick check to see if there are indeed any entries 
in the queue. 

The PL/I declaration for the queue header is as follows: 
(..'L§.t is an area in which the queue entries actually reside.) 

del 1 ioq~header ext, 
2 lock bit (36), 
2 first_ptr bit (18), 
2 last_ptr bit (18), 
2 length fixed, 
2 var area.(segment_size); 

Each entry of the queue contains the following variables: 

1. forward ptr 

2. backward ptr 

3. dumper_id 

a pointer to the next queue entry 

a pointer to the preceding queue entry. 

the directory path name of the dumping 
process (acts as an index into various 
1/0 process tables when converted to its 
numerical value). 

4. The process_id of the dum~ing process (to b~ used by 
the l/0 process _to awaken the dumping process when the 
return arguments have been loaded in the queue). 



./~ 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.01 PAGE 5 

The PL/I declaration for each queue entry is as follows: 

de 1 1 entry c t 1 ( qp) 1 . 

2 f o nva r d_p t r b it C 1 8 ) ( 
2 backward~ptr bit (18; 1 

2 dumper _id bit ( 36) 1 

2 processid bit (36); 

The preamble string (described fully in BH.4.03) is stored 
in the preamble buffer segment known to the particular 
dumping process and simultaneously to the 1/0 process. 
Although the segment numbers each process associates with 
this segment may be different 1 the "dumper_id'' guarantees 
no ambiguity. 

Each dumping process has~ in addition to the preamble 
buffer segment and the header segment 1 another segment 
vvhich coqtains (if called for) the directory segment pointed 
to by the terminal entry in the preamble. This buffer 
segment is handled in the same way the preamble buffer 
segment is and identification is again by means of the 
11 dumper _id11 va r iab 1 e. 

The I/0 Oueue Loader 

The I/0 queue is loaded by the dumping routine foroutlne 
which is common to a 11 dumping processes. This r.ou_t i ne 
transfers data given to it as arguments into the h~ader 
buffer. Some of this data points indirectly to dat~ seg­
ments; the rest i= specific information needed by ·the 
various reloaders. (See BH.3.01 and BH.3.02). 

The call to ioroutine is given by: 

call ioroutine (dumper_id 1 tmtype 1 m1 uid 1 dtm 1 name 1 slot 1 length~ 
table_name 1 table_index 1 errtnJ; 

where: 

dumper_id bit (36) 

tmtype bit (17) 

m fixed bin (17) 

uid bit _(70) 

is the identifier unique to each 
dumping process. (i.e. the 
directory path name.) 

is the terminal entry type. 

is the number of entries in the 
prearrb 1 e. 

is th~ unique identification of 
the terminal entry. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BH.4.01 PAGE 6 

dtm bit (72) 

name char (·k), 

slot char ( SL 

length fixed bin (17)~ 

table_name char (17)~ 

table_index char (6)~ 

errtn label~ 

is the data/time the segment 
pointed to by the terminal entry 
was last modified. 

is the slot name of the current 
directory being scanned by the 
dumper. 

is the slot number of the entry 
being processed by the dumper. 

is the current length (in 64 word 
pages) of the file pointed to by 
the terminal entry. 

is the name of a segment in which 
the retrieval arguments are stored. 

is an index into the table "table_ 
name" specifying which retrieval 
arguments to associate with the 
present argument list. 

is an error return. 

The work done by ioroutine is described belo\IIJ: 

1. Check the queue status~ if unlocked go to 3. 

2. Since the queue is locked~ call block~ upon awakening 
go to 1 

3. Lock the queue. 

4. If queue is too full for a new entry~ go to ~ (after 
unlocking the queue and waking up any waiting processes). 

5. Allocate area for a new queue entry. 

6. Fill in the queue- (thread at end of list). 

7. Unlock the queue (avvaken processes waiting for 
the queue). 

8. Wakeup the 1/0 process. 

9. Ca 11 b 1 ock. 

10. Get table_name and table_index from the header buffer. 

1 1. Return. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.01 PAGE 7 

ioroutine allocates storage for the queue entries whereas 
the I/0 process frees t~e storage of each queue entry. 

While the dumping process is blocked, the I/0 process 
. finds an appropriate waiting device and determines and 

loads the table_name and table_index into the header·buffer. 

Figur~ 2 is a flovJ diagram for the procedure ioroutine. 

The Dumoing I/0 Process 

The dumping I/0 process works in series with ioroutine 
in the sense that 1) the l/0 process must wait for io~p~tine 
to load the queue before it can take any action and 2) 
ioroutine cannot continue until the I/0 process has performed 
certain processing of the appropriate entry. 

Due to t~e scanning algorithm used by the dumping process 
subsequent calls from any one dumping process will request 
dumping of entries and segments whose prea~bles are quite 
similar. It is possible to take advantage of this duplication 
by having each dumping process associated with a specific 
device. This would allO\'\/ the reload process.(by using 
just one device and hence the results of 1 dumper) to 
decode only that part of the prea~ble which is not duplicated 
on subsequent logical records. This is not always possible 
but to insure that the attempt is made a ''device scanning 
list" exists which associates each dumping process with 
several devices. Ordinarily the first entry of the list 
(associated VJith the device of primary interest) will 
be the only non-random one. However if it becomes neces.sary 
to change over to a second device for some reason, subsequent 
entries in the list specify available devices. 

The work done by the 1/0 process is described below: 

0. Block- vJait for wakeup. 

1. Check the queue status, if unlocKed go to 3. 

2. Since the queue is locked, call block, upon 
awakening go to 1. 

3. Lock the queue. 

4. If the queue is ~mpty go to 0 (after unlocking the 
queue and vJaking up any vJa it ing processes). 

5. Free the current queue entry - reconnect the pointer 
chains 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.L~.01 PAGE 8 

6. Unlock the queue (wakeup any waiting processes). 

7. Store the appropriate table_name and table_index 
in the he?der buff~r for the appropriate dumping 
process. 

B. Wakeup the dumping process (the processid was in 
the queue entry). 

9. Select a waiting device (refer to the "device 
scanning 1 ist" ). 

10. Start I/O on the selected device. 

11. f'.1ake the map entry (copy the preamble segment into 
the MAP segment). 

12. , Go to 0. 

The flow of control for the l/0 process is given in Figure 3. 



..... 

. Dumpingl 

_Pro~essj 

SECT I ON 81-i .l+. 01 P!.1.GE 9 

Dumping 
Process 

2 

I 

I 

Dumping I 
Process 

3 ----

---, 

I/O 

Queue I 
I 
I 

: J- ! 
L - - -~-- -- -- - _· - - _j 

I/O 

Process 

Device 

Figure 1. 

.- ~ Dumping 
Pro~ess 

(The I/O queue can easily 

be removed, as indicated, 

to allow one dumping 
process and one device 
pr-ocess to work 

synchronously on an early 

version of Multics.) 



I --....·.--

-~ 

:/ .';. 
---.--...i 
} 

. . I 
MUL TICS SYS TEivi-PROGRAfvif.lERS' f-:1/\~JUAL 

wfW-EIJi' 
\\Jv-i"\T 1/..l(;,.. 

~RO(\?~SE~ 

LC>t~ 
THE 

Q\)::-OE: 

I F\LL \ i~l I 
s .-~~-= C~h\ r-u ~::.! l . ... . ..... - -~~ 

1 e"i-~1i~~~ 

l . J 

J, 
VNLC>t~ 

'THS 

I 

..----~"-' --: 
\'J~\:-=.t-!J? f 
\\H1 \Tt ic\ 6- l 
nno' •·..-r::-·J 
\"' ··- .... :;: ;...;·.::'~j 

I 

----~ 

..._, ..-· 

S ECTfmJ BH. 4. 01 p,~GE 10 

F\&-U?-E L 

. -'-' 
I 0 f 0 tL \ \ \1·~ 



.. 

------···..!; ~' 

! . i . 
t11 U L T I C S S Y S T E fvl-PROG Rfl.i'Wi E R S ' fv\Ar'JU.l\ L S ECT-l O~J BH .I+. 01 

F-\&IJRE 3 
STA:?..T 

~t\\!.~~p l 
WAnml';" ·1 

I 
PRC<..t:S:S~s; i 

T"ttE" I 
QU\::"\)E 

'----.--_j 

u~L~ J 
Tttl: i&<----< 

C\0€0~ 

--,------, 
FREE TrtG : 'P..E(C>NNELT 

Q\.lEIJE :-----1 'POIMTER I 
~~- I I l 

~-E?--N.,.T_:::l_j I_ - '-_ ~ ~ ~S _ __! 

I 
\.H'J L co~ I THE 

L Q'J'EIJ~ -r 
.----· 

\V~\~<..t; I) p l 
~...; A lTl H (,- I 

P RCZ<= s.s :?5 i 
l 

P,AGE 11 



MULTICS SYSTEM-PROGRAMMERS' MANUAL 

' 

9 
Select a 
waiting 
device 

Start I/O 
on selected 
device 

Store Tablej 
name and 
index in 

header buffe 

1-
Wakeup 
Dumping 
Process 

Make Map 

Entry 

Figure 3. 

---

SECTION BH.4.01 

Copy 

Preamble 

PAGE 12 


