
!: '

TO: MSPM Distribution

FROM: . J. H. Saltzer~" M. A. Padl ipsky

. SUBJECT: New· .BJ. 0
; . .

DATE: 10/14/68

The attached revision of BJ.O rectifies a nund)er of omissions
in the 1 0/01/68> versiot'l ahc:J makes· several small corrections
to minor details. ThE! technical content is unchanged •.

A certain amount of confusion•r::esulted from the cover
letter to the 10/01:/68 vE!tsiQil~ in that the:· documentation
which it cited as being obs.ol~te should not ·all have been
discarded, according to the MSPM pol icy of retaining documents
until they have· been specifically replaced. Following ·
is a· list· of olde.r .documents fn section BJ and. the ·new .
numbers under which they· may be filed untf 1 they are specffically
replaced or obsoleted, those wishing to replaee discarded
sections may obtain copies from the Multics Document Room •.
Note· that these sections are outdated by the currE;!nt ·
implementation, but are tl'le only documentation on'the
topics available at present.

Old section

BJ.1.,02

BJ.1.03 and BJ.1.04

BJ.1.06 and BJ.1.07

BJ.2.00

BJ~4.02

BJ.4.03

BJ.4.05

BJ.S and subsections

BJ.7 .o3i.

BJ.8 and subsections
' '

New number

BJ.13.08

BJ.1.06

BJ~1.07

BJ.11.oo

BJ.13.09

BJ .5·.03

BJ.S.04
. .

BJ. 13 and correspondingly.
numbered subs·ec tlons

BJ.B.OS I

BJ.11 and correspondingly
numbered subsections .

Old section

BJ.9 and subsections

BQ. 6.03-.09

-2-

New nunt>er

BJ.1·2 .and correspondingly
numbered subsections

.Retain unti 1 replaced by specific
BJ·.1Q subsections

(Sections BJ.3.01 and BJ.3.02 should be retained under their
current numbers unti 1 replaced.)

Of the set of revisions issued, the following s~persessions
represent the actual direct replacements effected (the
supersession records on the documents as issued refer
to the section numbers, not the topics), in those cases
where section numbers and topics no l.Onger correspond:

New section Supersedes

BJ. 1 • 01
. !{;./"

BJ.1.08 ·

BJ. 1. 02 BJ .1 • 01
t/

BJ.1.03 BG .. 15 .01 .. -------~·· .

BJ.1.04 BJ. 7. 02-..v-·

BJ.2.00 BG .15 .01·

BJ.4.00
. v

BJ.3.03 ..

BJ.S.OO
,/

BJ.4.00 J
BJ.S.02 BJ.3.04'

BJ.10.00 8;).6.00, B;l. 6. OOA

BJ.10.01 . B;l • 6. 01 -. 02

''J t ..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.O PAGE 1

Identification

Overview of Traffic Control

Pub 1i shed: 1 0/14/68
(Supersedes: BJ.O# 10/01/68(

BJ.O# 02/23/67 J

J. H. Saltzer# R. L. Rappaport# M. J. Spier

Purpose

This section presents a general summary of the procedures
of the central supervisor that perform processor multiplexing#
interrupt management# and inter-process signalling. The
procedures are known collectively as the Traffic Controller.

References

Basic concepts of the Traffic Controller are set forth
in the Project MAC Technical Report 11 Traffic Control in
a Multiplexed Computer System'# by Jerome H. Saltzer#
~C-TR-30# ·published July# 1966. This thesis presents
the design approach to the Traffic Controller and is useful
for background information.

A second M.I.T. thesis# 11 lmplementing Multiprocess Primitives
in a Multiplexed Computer System#" by R. L. Rappaport#
describes in detail the many considerations which went
into the actual implementation of the Traffic Controller.

Terminology

A process is basically a program in execution. The tangible
evidence of a process is a processor stateword (a set
of machine conditions) and an associated two-dimensional
address space (a core image). The address space of a
process# defined by a Descriptor Segment# determines the
region of accessibility of the processor# both in execution
of instructions and in obtaining data. A dynamic linking
mechanism allows the process to Change the contents and
extent of its own address space# but this does not alter
the fundamental view of a process as the execution of
a program contained in the address space.

Within the system every process known to the system is
identified by a unique number# its process ~ This
number is a key to a table of all known processes# which
contains more information about each process.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.O PAGE 2

Every process is in one of five execution states:

1. running
2. ready
3. waiting
4. blocked
5. stopped

A running process is at this instant executing in some
processor. A ready process is one which would be running
if a processor were available. A waitin~ process does
not have irrmediate use for a processor, 1t is waiting
for a system•event (for example, the arrival of a page
into core) to happen within a predictable period of time.
A blocked process is one which has no use for a processor;
it is wa1ting for some event to happen sometime in the
future. The event may be arrival of a signal from elsewhere
in the system, or perhaps completion of a computation
by another process. A stopped process is a blocked process
that does not await events and which is guaranteed to
have left its hardcore data bases in a predictable state.

Every process is or is not loaded into core memory. The.
definition of loaded is entirely an operational one.
The "core image" part of a process may be stored in core
memory, or in secondary storage, or split between the
two. A process is defined as loaded only if enough of
it is present in core memory that it may operate within
critical supervisor modules.

An active process is one for which there is sufficient
information in core storage to allow it to enter the ready
state. The necessary information for an inactive process
is stored on secondary storage, and must be retrieved
before the process is allowed to enter the ready state.
Operationally, an active process is one which appears
in the Active Process Table.

To control competition for core memory, the number of
processes that are allowed to concurrently participate
in the race for a processor at any given time is limited.
Such processes are said to be eligible for multiprogramming.
In the initial implementation, the system adm.inistrator
sets the number of eli$ible processes in the system.
The definition of mult1programming eligibility is entirely
an operational one, and is defined in section BJ.6.00.

..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.O PAGE 3

A number of things can happen to divert a process from
its programmed course. These diversions have been variously
termed traps, interrupts, and faults. We use the term
interrupt when referring to hardware signals coming from
outside the processor which cause a processor to depart
from its normal path of execution. Interrupts are distinguished
from faults, which are triggered by hardware signals generated
within the processor.

Processor multiplexing includes both the sharing of processors
among many users to provide interactive response (sometimes
called time-sharing) and the switching of processors among
several procedures in response to interrupts so as to
keep both processors and I/0 devices as efficiently used
as possible (sometimes called multiprogramming).

The Traffic Controller

The Traffic Controller is a set of procedures appearing
within the address space of a process.

The functions provided by the Traffic Controller are intentionally
primitive, it is viewed as the innermost layer of a
multilayered supervisor existing within a process. In
fact, a user's program is never permitted to call the
Traffic Controller entries directly. Instead, the user~s
program calls some outer supervisor layer which, for example,
checks the authorit)l of a call to signal another process.

The rest of this document will describe the Traffic Controller
as though it is used directly by some "customer". It '
is understood, however, that its only "customers" are
actually other supervisor procedures.

The Traffic Controller can be conveniently broken into
two distinct parts which perform its major functions:

1. The system interrupt interception routines

2. The process exchange

The three major functions of the Traffic Controller are
the fo 11 owing:

1. Perform multiplexing of processors among processes

2. Provide an interface with the system interrupt hardware

3. Allow one process to signal another.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.O PAGE 4

An important function of the Traffic Controller is processor
multiplexing. To visualize this multiplexing~ consider
the progress of a process~ as seen by the system. As
time passes~ the process goes back and forth among the
running~ ready~ waiting and blocked states as in the diagram
below:

blocked

The Traffic Controller has inserted the ready states in
order to multiplex~ or share, the processor among all
the processes demanding service. The process, however,
does not normally observe the times spent in 11 ready11 status.
From the point of view of this particular process~ the
above diagram looks like this:

{run wait I run l run I blocked I run i run J

with dotted lines indicating points at which the calendar
clock takes a quantum jump. Multiplexf.nl is arran~ed
so that, except for the real time clock umps~ it 1s basically
''invisible" to the affected process. Th s means that
a process can completely ignore the multiplexing being
performed by the supervisor. It also means that a process
must be substantially independent of timing. A further
implication is that service to critically timing-dependent
hardware functions must be provided by the Traffic Controller
itself.

The Traffic Contro-ller has two interfaces: on the one
side with the system interrupt hardware, and on the other
with the rest of the supervisor and the user's prograrn.
The hardware interface is described in detail in the section
on interrupt handling, BK.

The interface with the rest of the system consists primarily
of seven calls into the Traffic Controller. (There are
also several less important entry points concerned with
process synchronization, process creation, and processor-resource

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.O PAGE 5

management. These entries do not affect the significance
of this discussion and can be ignored for the moment.)
The seven calls can be classified into three groups as
follows:

1. Process Wait and Notify (PWN) calls: wait, notify.

2. Interprocess Communication (IPC) calls: block, wakeup.

3. Process interrupt calls: re-schedule, pre-empt, stop.

The Process Wait and Notify Calls

Every process reaches a point in its execution where it
has to have information from some other process; if the
information is unavailable, it abandons the processor
on which it currently executes until such time as the
information wi 11 become available, or unti 1 that event
happens. We name 11 event" anything that is observed by
some other process and which is of interest to our process.
We distinguish between two classes of events, system-events
and user-events. This distinction is made to take efficient
advantage of known characteristics of system events.
(In principle, events are all of the same nature and can
be handled uniformly.)

System-events are characterized by the fact that they
can be observed in the hardcore ring only and that they
are guaranteed to happen within a predictable period of
time (norma 11 y measured in mi lli seconds.) These inc 1 ude
the arrival of a page into core, or the unlocking of a
currently-locked system-wide data base.

A process that has to wait for a specific system-event calls

call wait (event);
I

Thls call puts it into the waiting state and associates
it with ''event" so that when some other process observes
the occurrence of "event" it calls

call notify (event);

which causes all the processe~ which are currently waiting
for 11 event'' to be res to red into the ready, and eventua 11 y
the running state. As can be seen, the PWN calls are
ev·~nt oriented. PWN is discussed in detai 1 in sections
BJ.2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL ·sECTION BJ.O PAGE 6

The Interprocess Communication Calls

A process may wish to give its processor away until it
be notified of the occurr~nce of a user-event. Typical
of a user event is that it may happen anytime in the future;
also# a user-event is process-oriented (the signalling
is done towards a specific process rather than "generally
broadcast") and is always associated with~ information.

Entry Point block of the Traffic Controller is called
by a process when that process cannot proceed until a
signal in the form of a wakeup from another process arrives.
It is the responsibility of the process calling block
to insure that some process will indeed wake it up. Block
is called with two arguments:

call block (interaction_switch, event);

The Traffic Controller will place this process in blocked
status, where it will remain until some wakeup signal
arrives for it. The 11 interaction switch" indicates whether
or not the process is blocking itself while interacting
with a human being, in which case the process will be
given a higher-than-usual priority in its race for a processor,
when awakened, to insure quick system response to human
requests; "event•• is a queue of event -messages, returned
by the Traffic Controller.

The entry name wakeup is used whenever a process wishes
to wake up a blocked process. The wakeup, by definition#
is directed to some named process as a result of the observation
of some user-event. A typical call from within process
"Q" to wake up process "B" and inform it that event "E"
has happened would be

call wakeup (B,E,B-state);

Process "811 may be running, ready, waiting, blocked or
stopped at this time. Although the information associated
with event "E" wi 11 not be lost to process 11 811 , the call
will have effect only if 11 811 is blocked, in which case
it will be restored to the ready state# or awakened.
Return argument '8-state' reflects process B's current
execution state.

Schedu 1 i nq

Whenever a process gives up a processor# it first establishes
a time-allotment and priority level number to be used
when the process is next to compete for a processor.
This advance establishment of conditions of the next running
is known by the (misleading) name of scheduling. The

-...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.O PAGE 7

priority number so assigned remains valid for the duration
of the next time-allotment,. and may be the basis for another
process' decision to pre-empt this process. Whenever
a process is to wait for a human response (interaction)~
it gives itself the highest-possible priority; as time
passes (with each timer-runout),. it decreases its priority
until it reaches and maintains the lowest-possible priority.

Interrupt Handling

The underlying philosophy of interrupt handling is that
interrupts are signals similar in nature to wakeup calls~
but originating on external hardware equipment. Thus,.
the sole function of the interrupt handling routines is
to. transform an interrupt into appropriate calls to the
Process Exchange. As an example,. for an interrupt representing
the completion of a write operation on a typewriter,. the
interrupt handler would call wakeup for the process which
originated output to~the typewriter,. ~ignalling an event-name
which is associated with that typewriter. No other computation
is done at the instant of the interrupt. The process
"responsible" for the interrupt (in the example above,.
the process initiating I/0 on that typewriter) is restored
into the ready state by the wakeup call; computation in
response to the signal (data transformation,. etc.) is
not accompliShed until the responsible process begins
execution.

There are two categories of interrupts. Those arising
from external equipment,. as Just described,. are called
system interrupts. Those originated inside the system
itself,. by the Traffic Controller,. are known as process
interrupts. The process interrupts generally call for
more drastic action than waking up some process; they
are orders to the process currently running that it should
change its execution state.

Process Interrupt Calls

Th~re are three types of process interrupts:

1. The timer runout interrupt

2. The pre-emption interrupt
t I

3. The stop interrupt

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.O PAGE 8

Each one of the three process interrupts causes the target
process to divert its execution into the Traffic Controller,
where it gives its processor away. The timer-runout interrupt .
is generated by the hardware whenever a process' time-allotment
runs out. The other two interrupts are software-initiated.
The pre-emption interrupt is set in behalf of a ready
high-priority process when it is observed that a lower-priority
process is currently executing on a processor; the running
process is thus forced to abandon the processor in favor
of the ready high-priority process. The stop interrupt
is set byba process when it wishes to halt the execution
of some other process.

When a process is initially made to run, it is given a
certain time allotment which the hardware keeps track
of. When this time has been used up, (or a pre-emption
interrupt occurs) a process-interrupt is generated which
diverts the process' execution into an interrupt handler
which then calls the Traffic Controller's entry point

call reschedule,.

to reschedule the process, give it a ;Fresh time allotment
and put it into the ready state.

A currently executing process may sometimes have to abandon
its processor, even though its time-allotment has not
yet run out. It is the scheduler which decides whether
or not to pre-empt a running process when a hi~her-priority
process enters the ready state. The decision 1s based
upon the length of time that the current process has already
run. For reasons of efficiency, there are two different
algorithms in the schedulerJ one is used when the ready
process is a system process, the other when it is not.

However, regardless of how the decision was reached, when
it is decided to pre-empt a running process then a pre-emption
interrupt is set which causes the target process to stop
its execution and to release the processor.

Sometimes, a process may wish to halt another process'
execution. If process "A" wants to stop process 11 811 ,

it calls

call stop (B)J

which wi 11 put process "B" into the stopped state. By
convention, process 11 811 , if currently executing in behalf
of the system, is allowed to finish its current system

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.O PAGE 9

task before it is stopped. This is done in order to insure
that a stopped process always leaves hardcore data bases
in a predictable state.

Entry point reschedule and the scheduler are discussed
in section BJ.5; stop is discussed in section BJ.4.

Interaction with the .E.i,k System

The operations of processor multiplexing interact with
those of core memory multiplexing. The multi-programming
control ("eligibility") mechanism guarantees that the
Traffic Controller will not attempt to multiplex processor
capacity among so many processes that memory becomes too
crowded. To this end, a little-used ineligible process
may be unloaded by the traffic controller system process
(see BJ.6) if space becomes too tight; when an unloaded
process comes to the top of the ready list it will not
be reloaded until adequate space is available for it to
run efficiently. Unloading is accomplished by paging
out the remainder of its descriptor segment and other
segments needed to enter the running state; the process
is remembered only by its entry in the Active Process
Table. Loading and unloading is done by a special (and ·
never unloaded) system process known as the Traffic Controller
System Process (TCSP).

Multi-programming control and the TCSP are described in
section BJ.6.

Process Control

In addition to the Process Exchange and the interrupt
handling procedures, the Traffic Controller contains a
''housekeeping" module, known as Process Control. This
module provides entries to

1 •

2.

3.

Create new processes.

Delete old processes.

Simulate an execution r:neter (processor usa$}e meter) ·r

for each process. 1

