
TO: 
FROM: 
DATE: 
SUBJECT: 

MSPM Distribution 
Michael J. Spier 
12/09/68 . 
IPC documentation 

The attached sections BJ.10.02-BJ.10.05 describe the new 
Interprocess Communication facility which is currently 
being implemented. They supersede sections BQ.6.03 through 
80.6.09 inclusive, which describe the old IPC. 

Section BJ.10.01 is re-issued to reflect the following 
changes in IPC design: 

1 • The ca l1 ing sequence of ipc$b lock has no longer the 
"interact ion'1 argument. 

2. The structure of the event message has been modified 
to include information about the origin of the message. 

3. Three new calls have been added, ipc$read_ev_chn, 
ipc$chn_1 and ipc$chn_2. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.10.01 PAGE 1 

Published: 12/09/68 
(Supersedes: BJ.10.01 10/02/68) 

Identification 

IPC reference manual 
M i c hae l J • Spier 

Purpose 

This section is intended to serve as a reference manual 
for the users of the interprocess communication facility 
(IPC); it lists all the entry points which are available 
to the facility's users, giving the full calling sequence 
(return arguments are underlined) as well as the ar~uments' 
PL/I declarations. Associated with each paragraph 1s 
an MSPM section number to be used as re.ference. 

The following is subdivided into three para~raphs corresponding 
to the IPC~s three major modules, the user-1pc, the 
hardcore-ipc and the device-signal table manager. 

~-IPC entry points 
I 

(See BJ.10.03) 

The user-ipc is a collection of procedures in segment 
<ipc>; this segment resides in all non-hardcore rings 
( 1 ... >63) and its entry points are available to a 11 users. 

1) To create an event channel in the caller's validation 
ring associated ECT, 

call ipc$create_ev_chn(cbname, code); 

del cbname fixed bin(71), code fixed. 

2) To destroy an event channel, 

call ipc$delete_ev_chn(cbname, cod~); 

3) To make an event channel into an event-call type channel 

call ipc$decl_ev~call_chn(cbname, procptr, 
dataptr, pr1or, code); 

4) 

del (procptr, dataptr) pointer, prior fixed; 

To make an event channel into an event-wait type channel 
(a newly created channel bas the event-wait type by 
defal.!lt), 

call ipc$decl_ev_wait_chn(chname, code); 



MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BJ.10.01 PAGE 2 

5) To empty a channel of all pending signals (in other words, 
in order to reset an event channel), 

call ipc$drain_chn(chname, code); 

6) To inhibit a channel for reading purposes (this turns the 
channel 'off' a~d causes ipc$block to completely ignore 
it) without affecting any pending signals, 

call ipc$cutoff(chname, code); 

7) To undo the previous call (turn channel 'on' again), 

call ipc$reconnect(chname, code); 

8) To get the name of this validation level's associated 
event channel 1, 

call ipc$chn_1 (chname, ~); -

9) To get the name of this validation level's associated 
event channel 2, · 

call ipc$chn_2(cbnarne, ~); 

10) To give, in procedure ipc$block, event-wait channel 
interrogation precedence over event-call channel 
interrogation, 

ca 11 ipc$set_wait_prior (code) 

11) To give, in procedure ipc$block, event-call channel 
interrogation precedence over event-wait channel 
interrogation, 

call ipc$set_ca11_prior (~)J 

12) To cause procedure lpc$block to completely ignore event 
call channels (in the caller's ring), 

i 

ca 11 ipc$mask_ev_ca 11 s (~) J 

13) To undo the above and make ipc$block re-interrogate event 
ca 11 channe 1 s, 

Note: 

~11 ipc$unmas~ev_calls (~); 

The last four calls (numbers 10->13) take effect in the 
caller's validation-level associated ECT only, and do 
not affect the remaining (potential) 62 ECTs. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.01 PAGE 3 

14) To block one's process until some event of current 
interest has occurred, 

call ipc$block(argptr, msgptr*, code); 

del (argptr, msgptr) pointer; 

argptr is a pointer to the base of an argument-structure 
(named the "wait-1 ist') which is declared as follows: 

del 1 wa i t_l is t, 
2 number_of_channels fixed, 

2 channels(n) fixed bin(71); 

/*current size of 
fo 11 owing array,~ I 

!~~array of event 
channe 1 names,~ I 

msgptr is a pointer to the base of a return argument 
structure into which ipc$block puts the received 
event-si~nal message and which has the following 
dec larat 1on: 

de 1 1 message, 
2 chname fixed bin(71), 

2 message fixed bin(71), 

2 sender bit(36), 
2 origin, 

3 devsignal bit(18), 
3 ring bit ( 1 8), 

/*channel over which 
message arrived*/ 

/,~2-word event 
message*/ 

/*sending process*/ 
/*origin of event 

message*/ 
/*1 = device signal*/ 
/*sender's ring 

nurlt>ep'r/ 

* I* Note: the preceding two items are right-adjusted 
(packed fixed bin(18) variables)*/ 

2 channel_index fixed; /*channel's index in 
"wa i t-1 is t '*I 

15) To read an event message out of an event channel 

call ipc$read_ev_chn(chname, readmark, msgptr*, 
code) J 

declare readmark fixed; /*0 = no event message 
returned 

1 = event message 
returned,'r/ 

(*) Even though msgptr i$ provided by the caller, it 
points to a structure into which ipc$b1ock puts return 
information. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.01 PAGE 4 

A 11 of the above-rnent ioned calls return one of the following 
values for 'code': 

code=O -> No error 

code=1 -> Ring access violation (event channel resides 
in ring which is protected from caller's 
va 1 idation level). 

code=2 -> ECT not found (speci~l case of ''event channel 
not found" ) • 

code=3 -> Event channel not found in ECT. 
I 

code=4 -> Logical error in using IPC (e.g. waiting for 
event -ca 11 chn). 

code=S -> Erroneous argument. (e.g. zero-value event 
channe 1 name). 

Calls 1Q SO associated procedure 

A call to ipc~block may result in the diversion of the process' 
execution into an event-call-channel's associated procedure. 

An associated procedure is always called by ipc~block 
with the following standard calling sequence: 

where 

call [associated-procedure] (msgptr); 

declare msgptr pointer; 

[associated-procedure] is an entry point pointed 
to by 'procptr' (see ipc~decl_ev_call_chn) 

and where 'msgptr' points to the base of the following 
structure: 

del 1 ev_message# 
2 event channel fixed bin(71), 
2 message fixed bin(71 ), 
2 sending_process bit(36), 
2 origin# 

3 dev signal bit(18), 
3 ring bit(18)., 

2 dataptr pointer; 

/*right adjusted*/ 
/*right adjusted*/ 



, 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.01 PAGE 5 

Hardcore-I PC entry points 

This is a collection of procedures in segment <hc_ipc> 
which, as its name implies, resides in ring-0. These entry 
points are accessible through the gate <hcs_>. Normally, 
only entry point hcs_~wakeup is called by the user, and 
the remaining two entry points are internal to the IPC. 
However, the user may call hcs_~ipc_init which is foolproof 
and ineffective if unnecessarily invoked, or hcs ~block 
(at his peri 1) which wi 11 block his process until the 
next wakeup is received (if ever). 

As implied above, all these entry points are available 
from all non-hardcore rings. 

1) To send an IPC signal to some other (or perhaps one's own) 
process, 

call hcs_~wakeup(processid, chname, message, code); 

del processid bit(36), message fixed bin(t1 ); 

The error code returned by this call differs from the above­
mentioned and can assume one of the following values: 

code=O -> No error (signalling correctly done) 

code=1 ->Signalling correctl¥ done but target process was 
found to be in the stopped' state. 

code=2 ->Erroneous call argument, signalling aborted 
(e.g. zero-value process-ID, zero-value channel 
name). 

code=3 ->Target process not found, signalling aborted. 
(e.g. process-ID is wrong, or target process has 
been destroyed) . 

2) To block one's process until the occurrence of the next 
wakeup, 

call hcs_~block 

3) To inform ring_o of an ECT in one's validation-level 
ring. 

call hcs_~ipc_init(ectptr); 

del ectptr pointer; 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION B .. J.10.01 PAGE 6 

Device Signal Table Manager entry goints (See BJ • 1 0. 05 ) 

The Device Signal Table Manager is a collection of procedures 
in segment <dstn1> to provide·an interface between (hardware) 
processor interrupts and the Traffic Controller's entry 
'wakeup'. The DSTM resides in wired-down hardcore and 
can be invoked by hardcore procedures only. 

1) To attach a device to one's proce·ss and associate it 
with some event channel.., 

call dstm$attach(devindex.., mode.., chname.., code); 

del (devindex.., mode) fixed; 
/*mode=O -> binary.., 

mode=1 -> count*/ 

'code' returns one of the following values: 

code=O -> No error (device successfully attached). 

code=1 -> Erroneous device index. 

code=2 ->Device already attached; call aborted. 

2) To detach a device from its present owner, 

call dstm$detach(devindex); 

3) To find out to whom a specific device is currently 
attached, 

call dstm$check_auth(devindex, processid); 

•. 




