
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.8.01 PAGE 1

Identification

create_proc

Published: 11/03/67

R. L. Rappaport ,
Purpose

This document describes the program called in order to
create a process.

Discussion

As is explained in BJ.2.01, creating a process means creating
a group of segments. Procedure create_proc is the u mal n"
program involved in the creation of these segments. Create_proc
executes in the administrative ring and is only callable
from that ring. The calling sequence is:

call create_proc (id, pit, 11, opt_stack, 12, restrict,
13, wdt, 14, account, creat~_linker_
segs. user _id);

where:

id

pit

11

opt_stack

12

· restrict

13

wdt

14

account

is the process id which is returned to the caller.

is the path name of the process initiation table.

is equal to 11 1"b if a link should be established
in the new proce~s directory for pit and is equal
to "O,.b if a copy of pit should be put into
this directory. ·

is the path name of the option stack segment.·

is similar to 11 but 12 refers to opt_stack.

is the path name of the restriction segment.

similar to 11.

is the path name of the working directory table.

similar to 11.

is the path name of the accounting segment
(Ordinarily this argument is zero and the created
process has the same account as the creator.
Only privileged processes can specify something
other than zero.)

Note that a link to the appropriate account
is always macre:-

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BJ.8.01 PAGE 2

-
create_linker_segs is the entry point of a procedure which

constructs a linker package. That is,
it creates the needed segments and builds
the pre-linker driving table.

user_id is the user group to which this new process
will belong. This argument is ordinarily
zero and the new process is put in the same
group as its creator. Only privileged
processes can specify otherwise.

Create_proc is basically a driving program in that very
little of the computing associated with process creation
is done by create proc. Instead create_prcc calls a variety
of subroutines whTch perform the actual tasks.

All the segments that are created at process creation
time reside in the process directory of the new process.
Therefore6 the first task ef create_proc is to create
the new process directory. This is accomplished by ca 111ng
the hardcore ring procedure estbl~rQS; (see BJ.8.02).
Estblproc first establishes the i~ for the new process
by calling get_proc_id (see BJ.-7 .03). Using this id,
a directory is established in the process directory directory.
The name of this new process directory is,

>process_dir_dir>fggxxbz

where fggxxbz is the guaranteed to be non-obscene character
string representation of the process id created by get_proc_id.

With the new proceJ~ directory available, create_proc
can proceed with its tasks. In the calling sequence of
create_proc a group of path names are specified along
with a group of "switches". Depending upon the setting
of a particular switch, create_proc either establishes
a link in the new process directorr to the given segment
or it copies the contents of the g ven segment into a
brand new segment established in the new directory. ·The
linking, if appropriate, is accomplished by calling the
file system primitive apoendl (see Section BG.8.02), whereas
the segment copring, if appropriate, is accomplished by
calling subrout ne copy_seg (see Section BJ.S.OS).

Having established the links and/or segments specified
in the calling sequence, create_proc performs a call to
the entry create_linker_segs (see Section BJ.8.03) specified
in the calling sequence •. Create_proc passes the path
name of the new process directory on the call. This procedure

~

..

,,.......

'

MULTICS SYSTEM-PROGRAMMERS' t-4ANUAL SECTION BJ.8.01 PAGE 3

creates, in the new process directory, the segments that
the new process will need in order to be able to dynamically
link itself. Among these segments are a Segment Name
Table (SNT) (see Section BD .3.01), a linkage section for
the linker (i.e. linker.link), and a linkage section for
the segment management module (i.e. SMM.link). Create_linker_segs
then compiles a table, similar in format to the Segment
Loading Table (SLT, see Section BL.2.01), which lists
the path names of the segments that the new process will
have to pre-link in order to initialize the linker in
the address space of the new process. This table, known
as the pre-linker driving table lists all the segments
created by create_linker segs and in addition procedure
segments such as the linker and the segment management
module. This table is returned to create_proc.

At this point all the administrative ring segments of
the new process have been created and create_proc calls
to a hardcore ring procedure to create the hardcore ring
segments that will be needed by the new process. The
hardcore ring procedure, create_hardcore_segs (see BJ.8.04),
is passed the id of the new process, the user id (or the
null character string, $ee below) of the new process.
The specification of the null character string as the »
argument 11 user idu, is used to indicate that the new process
should be put Tnto t.he creator's group. In fact most ·
processes may only dreate new processes in their own group.·
This restricti9n is implemented by having estblproc ignore
this argument Unless the calling process is one of the
privileged few that may specify otherwise. Create_hardcore_
segs creates a Known Segment Table (KST, see Section BG.1), .
a Process Data Segment (pds, see Section BJ.1.03), and
a process definition segment (pdf, see Section BJ.1.06)
for the new process. .

Upon return.from create hardcore_segs, the new process
appears to be a normal blocked process. Therefore create_proc
simply awakens it by calling wakeup (see Section BJ.3.02).
Having done this create_proc returns to its caller. Figure
1 is a flow diagram of create_proc.

MULTICS SYSTEM-PROGRAMMERS"" Mt\NUAL SEO:TION BJ.8.01 PA.GE 4

call copy_se
for
PIT

call

Call copy_se
for

restriction
segment

Call copy_seg
for working
directory

table

Call Create_proc

No

call
estblproc

call append
~..!:.::::.:::.-~ for PIT

Call appendl
for option

stack
segment

Call appendl
~~~--~1for restricti n 

segment 

Call appen 
Yes for working 

~~~--~ directory 
table

Call appendl
·~------------~~or accountin.~~-----------~~

segment

call
create linker

segs

Figure 1. Flow diagram of create_proc

call
create_hard­
core_segs

ca
wakeup

