—~

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BJ.8.03 PAGE 1
Published: 11/03/67

Identification

create_linker_segs
R. L. Rappaport

Purpose

Subroutine create_linker_segs is one of the procedures
invoked at process creation time. This procedure creates:
copies of various linkage sections and places these copied
segments into the new process directory of the created
process, Create_linker_segs also produces a table, the
pre=-linker drivin? table, in which these created segments
(and others as well) are listed, This table is used at
process initialization time to pre-link the linker in |
the new address space., 1t is intended that several versions
of create_linker_segs will be available, each capable

of establishing a particular version of the linker and

its needed subroutines, That is, to create a process

with a particular linker would require calling a particular
version of create_linker _segs. This document provides

an outline of the structure into which all such versions
must fit, Section BJ.8.06 describes the initial version
of}create_1inken_segs which will be implemented in initial
Multics.

Lntroduction

In order to be able to handle dynamic linkage faults,

a process must have a pre-linked linker in 1ts address
space that will be invoked upon recognition of a 1linkage
fault, When we say pre-linked this does not imply that
the linker need be pre-linked to every procedure it calls
and that these in turn need be pre-linked, Rather it
implies that a minimum path through the linker be
pre-linked and that the linkage faults that the linker
itself may get can be handled by the subroutines on the
minimum path, Before going on let us review the events
that occur at the time of a linkage fault,

Let us consider the case where procedure <a> with linkage
section <a,1link> calls procedure with linkage section
<b.link>. At the time of the fault, control is immediately
passed to the fault interceptor module (FIM, see Section
BK.3.03). Upon determining that the fault is a linkage
fault, the FIM decides to call the linker, 1In order to

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BJ.8.03 PAGE 2

call the linker, the FIM must call indirectly through

a pointer in the process definitlon segment (pdf. see .
BJ.1.06). The reason this call must be done indirectly

{s that the FIM and its linkage section are shared segments
pre-linked at system initialization. Since the linker

need not have the same segment number in each process,

we cannot place a valid pointer to the linker in FIM.link.
However, pdf does have the same segment number in each
process and hence its segment number can be placed in
FIM,1link. } | 4
The purpose of the linker is to produce, from the symbolic
information available in <a> and <a.link>, a valid ITS
pointer that points to the entry point of located _
in <b.1ink>. This ITS pointer will then be stored directly
into the word pair in which the original fault was discovered,
In order to develop the needed ITS pointer, the linker

must first obtain segment numbers for and <b.1ink>,
This is done by a call to the segment managment module
(SMM, see Section BD,3.00) which returns the needed segment
numbers, With these se?ment numbers it is not difficult

to see how the linker m ?ht develop the needed pointer

that will replace the original fault tag. Since it is

not our purpose to review the algorithms coded into the
linker but to get an overview of the whole strategy, let

us instead look at the way the SMM develops the segment
numbers that it returns to the linker, What follows is

a simplified overview of the SMM which only points out
things relevant to the discussion at hand.

The SMM uses a‘data base known as the Segment Name Table
(SNT, see BD.3,01). The SNT is a table which lists
correspondences between

1. call names of segments (i.e. the names by which
they are called.

2, path names in the file system.
3. segment numbers,

Conceptually, the SNT is a set of 3-tuples. The elements
of each particular 3-tuple are the call name of a segment,
its path name In the hierarchy, and the segment number,

if any, that has been assigned to the segment. (The "if
any" in the preceeding sentence refers to the fact that
the segment number element in a particular 3-tuple might
be blank signifying that no segment number has as yet
been assigned to this segment. -

MULTICS 'SYSTEM-PROGRAMMERS * MANUAL SECTION BJ.8.03 PAGE 3

The SMM is basically faced with the following task. It is
~called and passed the call name of a segment and it

wishes to return the segment number of the segment. The
SMM accomplishes the task in the following way. First

the SMM Tooks into the SNT te find if a g?ven call name

is 1isted in an existing 3-tuple. Suppose for example.
that it is listed in an existing 3-tuple, (We will discuss
later how this 3-tuple came into existence.) If the
segment number element is also listed in the 3-tuple,

the job is done., However, if the segment number is not
listed, it must be determined before we can proceed.

In order to determine this number we must call the basic
file system primitive estblseg (see Section BG.8,04) and
pass to estblseg the path name found in the 3-tuple, -
Estblseg returns the desired segment number., 1If on the
other hand we cannot find an existing 3-tuple which
contains the desired call name, our problem is to establish
such a 3-tuple. The search module (see BD.4,00) is the
procedure to be called in this case. The task of the
search module is simple, The search module is called

by the SMM, passed a call name and it returns a path name.
The SMM takes this path name and the call name and
establishes a new 3-tuple which as yet contains no segment
number, SMM then calls estb1se? to complete the 3=-tuple.
On subsequent calls for this call name, an existing 3-tuple
will be found. _

The introduction of one more concept will allow us to
complete this overview., 1In the hierarchy there exists

a certain class of segments known as "relationship
segments” ., These segments are lists of 3-tuples in which
the segment numbers are left out. These segments play

an important role in the SMM. :

SMM calls estbliseg in order to obtain a segment number

for a segment located in the file system hierarchy by

a given path name., However, the segment named by the

path name might not be the segment in which the SMM is
primarily interested; it might in fact be a relationship
segment associated with the desired segment., The
relationship segment of a segment serves to establish

the association between call names that the segment uses
and path names that the human author of the segment wished
to make explicit. For example, if we have a procedure

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.8.03 PAGE h o

named z that calls a routine named "cosine" and we wish

this call diverted to the segment with path name >a>b>x,

we need merely establish a relationship segment for z

that 1ists this desired correspondence, When we first
encounter z, the SMM will obtain its relationship segment

and SMM will incorporate the contents (i.e. the 3-tuples)

of 1ts relationship segment into the SNT. When z subsequently
‘experiences a linkage fault for cosine, the 3-tuple associating
cosine with a>b>x will already exist, .

Let us now review the path followed on a linkage fault.
The FIM calls the linker indirectly through pdf. The
linker calls SMM in order to obtain segment numbers, ‘
The SMM refers to its SNT and either calls, (1) nothing
because a complete 3-tuple exists, (2) estblseg because
an incomplete 3-tuple exists or (3) the search module
to. get a 3-tuple, When the SMM has obtained the desired
segment number it returns to the linker which sets the
desired link and returns to the FIM, Now we are faced
with the question of what to pre-link,

The indirect call from FIM to pdf need not be pre-linked
at process initialization time since all processes use

a shared copy of FIM and its linkage section and this
s?ared copy is linked to pdf at system initialization
time. : _

‘The pointer in pdf to the linker must be set at process
initialization time. Likewise the call from the linker
to the SMM must be pre-linked. :

The SMM however makes two calls and one external reference.

The reference is to the SNT and it of course must be pre=-linked,

However, only one of the calls, the call to estbiseg,

must be pre-linked. The call to search will not be pre~linked.
However, in order to be able to handle the fault that

will result from the call to search, a 3-tuple that defines

an association between the name "search" and a pathname

must be placed in the initial SNT of the new process,

This pathname will in fact be for a relationship segment

for search which will list all the call names used by

search and their associated pathnames. Let us see how

this will work.,

§§§§§

.‘-’ |

MULTICS SYSTEM=-PROGRAMMERS © MANUAL SECTION BJ.8.03 PAGE 5

At the time of the first linka?e fault in the new process
(a fault for call name x) the FIM will call the linker
which will call the SMM, (So far so good.) The SMM will
find no 3-tuple defining x and will therefore call search
at which time we will get a recursive linkage fault. '
We will again travel down the path arriving at the SMM
again this time looking for a 3-tuple defining "search".
This time we will find one and call estblseg to get a
segment number, Estbliseg will inferm the SMM that the
given pathname was in fact a relationship segment and

the SMM will then incorporate the contents of the relationship
segment directly into the SNT before obtaining the segment
number of the search module itself, After obtaining the
number, the SMM will return and the linker will set the
fault in the SMM°s linkage section and return to the FIM.
The FIM will restore the conditions as they were before
the second fault and the SMM will complete its call to
search, Search may get linkage faults but the call names
will all be defined because of the relationship segment
described above, Eventually, search will return and the
3-tuple definin? x will be established by the SMM, 1In

this way the original linkage fault for x can be satisfied.

Discussion

Create_linker_segs is called from create_proc (see BJ.8.01)
and the calling sequence is: ' :

call create_linker_segs (dir_pathname);
where dir_pathname is the pathname of the new process directory;.

The purpose of create_linker_segs is to establish the
needed pieces of data that will be used in pre~link1n?

the linker in the new process address space. In particular,
in order to pre-link the linker, the new process will

have to have available a copy of the linker’s 1inkage
section, a copy of SMM’s 1linkage section, etc., Therefore,
create_linker_segs must first create copies of several
segments and place them into the new process directory,

In particular, create_linker_segs must make copies of

the linkage sections of the segments that will be pre-1inked,
These are:

1. The linker“s linkage section.
2. The SMM”s linkage section,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTiON BJ.8.03 PAGE 6

Also the initial SNT which 1ists a 3~-tuple defining search
must be copied into the new directory.

Secondly, the pre-linker needs to know which segments

to pre-link., The pre-linker“s principal piece of data

is the pre-linker driving table which must be created

by create_linker_segs. This table, whose format is given
below has an entry for each segment which either is to

be pre-linked (e.g., the linker) or is referred to by

a segment that is to be pre-linked (e.g., estblseg which

is called from SMM). The segments listed in the pre-linker
. driving table are:

1. linker
2. linker.1ink
3. SMM
4, SMM.link
5. SNT | |
6. estblseg (actually hcs_1§estblseg. See BD.6.03)

7. estblseg.link (actually hecs_1.1ink)

The pre-linker driving tabie is placed into the new process
directory. The table will be accessed by the new process
itself once it begins its self initialization.

~ Lormat of the pre-linker driving table

The pre-linker driving table is implemented in two segments,

The first segment <pre_link_dt> contains a fixed length :

entry per listed segment. The second segment <pre-1ink_nametabie>

contains variable Tength information (i.e., character o
strings) about each of the segments. The fixed length

entries contain relative pointers to their respective

?ntries in the name table. The PL/I declaration of <pre_link_dt>
s] . .

‘o

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.8.03 PAGE 7

dc1 1 pre_link_dt based (p)
2 count fixed |
2 entry (p—>pre_link_dt.count),

3 call_name_ptr bit (18), /* Relative ptr to call
name of seg */

3 path_name_ptr bit (18), /* Relative ptr t¢ '
: _ directory path name %/

3 entry_name_ptr bit (18), /* Relative ptr to entry
' name ¥/ :

3 1linkage_section_sw bit (1),/* "1"b if segment is
linkage section "O"b
if text segment */

3 pre_link_sw bit (1), , /*"1"b if segment should
be pre_Tinked */

3 éssoc_seg_ptr bit (18), /* Relative ptr to entry
o of associated text
or linkage section */

3 segptr ptr; /* Pointer to segment %/

The relative peointers to the call names, path names, and
entry names are pointers to structures allocated in the
name table. The PL/I declaration of the respective
structures is:

dcl 1 name_struc based (p),

2 count fixed,

2 char(p-—name_struc.count);
The assoc_seg_ptr in an entry is a relative pointér to ,
the fixed length entry of the associated text (1inkage)
segment if the current entry is one for a linkage (text)

segment, That is, this relative pointer points into
<pre_link_dt> itself.

MULTICS SYSTEM=-PROGRAMMERS © MANUAL SECTION BJ,8.03 PAGE 8

The segptr is an ITS pointer to the segmeht that will.
be established at pre-linking time., Create_linker_segs
initially leaves it empty.

The pre_link_sw is one of several things that will be
discussed below, ‘

.For the advanced reader

Several points have been ignored until this point, First
several other segments not yet mentioned will have to
appear in the pre_linker driving table, Of particular
interest among these is a "datmk" type segment that will

be needed to pre_link "trap before .1ink" type references
that will be encountered, The system Initialization program,
dbi (data base initializer, see BL.7.03), a hardcore segment
pre-linked at system initialization, is avallable and

so is its shared linkage section., ‘A1l that need be done

is 1ist the two segments in the table, However, without
special consideration several of the pre-1inking procedures
are liable to attempt to write into the linkage section

of dbi. This would be disastrous since the segment has

been made read only, Therefore for dbi,1ink’s entry in

the pre-linker driving table the pre_linker_sw is set

to "O"b in order to prevent the attempted writing,

Other segments that have te be listed include the various
EPL routines called be SMM and the actual segments into
which the SMM is really broken, That is, we have been
considering the SMM as a sin?le segment when in reality
it is a collection of several segments.

Finally, one more point sheuld be made, When the new
process gets through pre-linking it will make its first
call to a procedure named "init_admin®, This call will
cause a linkage fault, 1In order for a creator process
‘to be sure that the correct segment is established for
"init_admin" an additional 3-tuple is placed in the SNT
by create_linker_segs. This 3-tuple relates the name
init_admin to a path name in the hierarchy. 1In this way,
the creator has control over the initial path which the
new process will follow,

