
MUL TICS SYSTEM-PROGRAMMERS' MANUAL 

Identification 
4 

init proc 
R. L':· Rappaport 

Purpo§e 

SECTION BJ.9.01 PAGE 1 

Published~ 11/03/67 

This document describes one of the subroutines involved 
in process initialization. An overview of process 
initialization is pr~sented in BJ.2.02. 

Introduction 

As explained in the overview of process initialization, 
initializing a process means initializing the address 
space of the process. This includes creating several 
segments (e. g. stack segments) and prelinking a path 
through the linker, in the new address space, so that 
linkage faults can be handled dynamically. · 

A new process begins execution in subroutine swap_dbr 
(see BJ.5.01). Among the items placecl in the new process 
address space, by the creator of the new process, is a 
flag which is used to notify swap_dbr the first time the 
new process begins execution. In other words, if swap_dbr 
finds the flag on in a particular address space, then 
swap_dbr turns it off and sets the new process on the 
path to ~elf initialization. Swap_dbr in fact calls 
init_switch.(see BJ.9.06) which in turn calls init_proc. 
Init_proc never returns from this cell. 

Discussion 

Subroutine inlt_proc is called with no arguments. That 
is the calling sequence is simply:. 

call init_proc; 

The stack in use at the time of the call to init_proc is 
the fault_stack (.see BJ.1.06). 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.9.01 PAGE 2 

Init_proc is basically a simple driving program which 
performs several tasks by calling upon other modules to 
do them. The tasks are: 

1. The creation of a call stack in the hardcore ring 
and a call stack in the administrative ring. 

2. The pre-linking of the segments involved in 
dynamic linking. 

3. The passing of control from the hardcore ring of 
the new process into the administrative ring. 

The actual actions taken by init_proc are discussed below. 

Creating stacks ls simply done by calling subroutine 
create_stack (see BD.9.08)specifying the ring in which 
the stack will reside. Therefore init_proc merely calls 
this routine twice to create the needed segments. 

The prelinking of the linker segments is accomplished by 
calling subroutine pre_linker_driver (see BJ.9.02). 
Pre_linker_driver uses as data the table produced by create_linker_ 
segs (see BJ.8.03) at process creation time (i.e., the 
pre_linker driving table). 

F ina 11 y, . i ni t_proc gives up cont ro 1 by calling sub rout 1 ne 
gate_init (see BJ.9.03). Gate_init never re~urns to init_proc 
since it passes control outward to the admin1strative 
ring. 


