7~

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BJ,9.01 PAGE
Published: 11/03/67

Identification

init_proc
R. L, Rappaport

Purgose

This document describes one of the subroutines involved
in process initialization, An overview of process
initialization is presented in BJ.2,02,

" Introduction

As explained in the overview of process initialization,
initializing a process means initializing the address

space of the process, This includes creating several

segments (e. g. stack segments) and prelinking a path

through the linker, in the new address space, so that

linkage faults can "be hand]ed dynamically, -

A new process begins execution in subroutine swap_dbr

(see BJ.5.,01), Among the items placed in the new process
address space, by the creator of the new process, is a
flag which is used to not1Fy swap_dbr the first time the
new process begins execution, In “other words, if swap_dbr
finds the flag on in a particular address space then
swap_dbr turns it off and sets the new process on the
path to self initialization, Swap_dbr in fact calls
init_switch (see BJ,9,06) which in turn calls init _proc,

Init’] _proc never returns from this cell,

Discussion

Subroutine init_proc is called with no arguments That
is the calling sequence is simply:.

call init_proc;

The stack in use at the time of the call to init_proc is
the fault_stack (see BJ,1.06),



MULTICS SYSTEM~-PROGRAMMERS © MANUAL SECTfON BJ.9.01 PAGE 2

Init_proc is basically a simple driving program which
performs several tasks by calling upon other modules to
do them., The tasks are: '

1. The creation of a call stack in the hardcore ring
and a call stack in the administrative ring.

2, The pre-linking of the segments involved in
dynamic linking. -

3. The passing of control from the hardcore ring of
the new process into the administrative ring.

The actual actions taken by init_proc are discussed below,

Creating stacks is simply done by calling subroutine
create_stack (see BD.9,08)specifying the ring in which
the stack will reside., Therefore init_proc merely calls
this routine twice to create the needed segments.

The prelinking of the linker segments is accomplished by

calling subroutine pre_linker_driver (see BJ.9.02).
Pre_linker_driver uses as data the table produced by create_linker_
segs (see BJ.B.03) at process creation time (i.e., the

- pre_linker driving table),

Finally, -init_proc gives up control by calling subroutine
gate_init (see BJ.9.03). Gate_init never returns to init_proc
since it passes control outward to the administrative

ring.

v,



