
,.r

MULTICS SYSTEM-PROGRAMMERS' MANUAL

ldentificatio..o.

The Process Bootstrap Module
R. L. Ra p pa po r t

.fur pose

o3
Section BJ. 5 .'.fY(' PAGE 1

Published: 9/27/66

The Process Bootstrap Module is the vehicle by which processes
restore themselves to core subsequent to having been unloaded.

Introduction

All processes that are not running contain a history, in their
respective Process Concealed Stacks, of a call to entry point
Swap-DBR, in the Process Switching Module. In the course of
events, a process that is not running may be unloaded. (See
Section BJ.10.03). When a process is unloaded the Process
Concealed Stack is removed from core storage, along with a few
other basic parts of the process. At some subsequent time some
other process, operating in Swap-DBR, will give control of a
processor to the unloaded process, causing the unloaded process
to itself begin operating in the second half of Swap-DBR. (See
Section BJ.5.01). However the unloaded process will not have
available the call history of how it arrived in· Swap-DBR

r-- originally. The unloaded process \-Jill then call the Process
Bootstrap Module in order to retrieve this information, along
with ·other needed information removed when the process was
unloaded, and the process will not return to the second half of
Swap-DBR until it has completely restored itself to core •

.Q_~iption

The description of. the Process Bootstrap Module which follows is
only meaningful if ~he reader is acquainted with the definitions
of the unloaded, loaded, and active states of processes. For a
complete description of these ideas see Sections BJ.lO.OO through
BJ.l0.04. A brief summary of pertinent facts from these
documents is listed here. An unloaded, active process has only
four pieces of information in core memory.

1. An entry for itself in the Active Process Table.

2. An entry for itself in the Process Segment Table.

3. An entry for its Known Segment Table in the Active Segment
Table.

4 •. An entry for its hardcore ring pageable stack in the
Active Segment Table.

When a process begins the loading operation it has, in addition
to the above:

MULTICS SYSTEM-PROGRAMMERS' MANUAL
o3

Section BJ.s.e-1 PAGE 2

1. A hardcore ring Descriptor Segment with segment descriptor
words for standard versions of all hardcore supervisor
modules.

2 • An i n i t i a 1 I n t e r i m P r· o c e s s D a t a S e gm en t.

Both these segments are gifts of the process which preceeded this
loading process in the use of this processor.

A completely loaded process has at least the following in core,
in addition to the items mentioned for unloaded processes:

1. A hardcore ring Descriptor Segment with segment descriptor
words for this process' versions of all hardcore
supervisor modules.

2. The complete Process Data Segment which includes the
Process Concealed Stack.

3. The page table for this process' Known Segment Table.

4. The page table for this process' hardcore ring pageable
stack.

5. Complete wired down copies of all non-standard versions of
hardcore supervisor modules used by this process.

The Process Bootstrap Module is called
opera.ting in the second half of Swap-DBR.
i 5:

c a 1 1 boo t s t r a p (po i n t e r) ;

by loading processes,
The calling sequence

where pointer is the pointer to the process' entry in the Process
Segment Table. The· stack used on the call to the Process
Bootstrap Module is the Interim Process Concealed Stack, which is
contained in the Interim Process Data Segment.

The purpose of the Process Bootstrap Module is to enable a
process to restore, to core, the segments listed above that are
needed before a process can be considered completely loaded. The
Process Load Module in Segment Control (See Section BG.3)
provides a group of primitives, which if called, retrieve
specific segments belonging to a process. The Process Bootstrap
Module, essentially, does nothing more than exercise these
primitives.

Upon entering the Process Bootstrap Module, a process calls entry
po i n t 1 o ad P. r o ~ i n S e gm en t Con t r o 1 • The stack used i n t h i s
call is the Interim Process Concealed Stack, which is wired down
and is of given finite length. LoadprocP ~s- establishes in core,
page tables for the process' Known Segment Table and hardcore
ring pageable stack. The procedure uses the physical locations
of the files for these segments, which are accessible through

MULTICS SYSTEM-PROGRAMMERS' MANUAL

\

o5
Section BJ.S.~ ·PAGE 3

their respective Active Segment Table entries, for the retrieval.
It is the maintenance of these entries that allows Segment
Control to retrieve these two segments using only a given finite
length of stack. Return from loadprocess implies that the
respective page tables are in core. Therefore the Process
Bootstrap Module switches stacks to allow itself to use the
hardcore ring pageable stack. Now using this stack the process
calls entry point loadsegments, also in Segment Control, which
proceeds to load and wire down all the extra segments that this
process needs, including its O\'ln Process Data Segment. Return
from this procedure implies that all these segments .are in core.
Therefore, the job of the Process Bootstrap Module is nearly
complete. It needs only to switch stacks so that it is using the
Interim Process Concealed Stack again and to perform a return to
Swap-DBR, in order to finish. Figure 1 is a flow diagram of the
Process Bootstrap Module.

It should be noted that loading processes should not be unloaded.
This is because the Interim Process Data Segment does not have a
residence on secondary storage. Hence there is no place to page
the information in this segment. The unloading of loading
processes is prevented by the existence of the process loading
switch in the Active Process Table entry of the respective
loading processes. This switch is on during the entire time in
which the process cannot be unloaded.

)

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Call b ootstrap (· ter) po1.n

,~

Call

loadprocess

,,
switch

stacks

,
Call

loadsegments

~-

switch

stacks

,,
return

a ~::,
SECTION BJ.S~~

Figure 1. Flow diagram for Process Bootstrap Module.

PAGE 4

