
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.02 PAGE 1

Published: 02/06/67

Introduction

Getwork
R. L. Rappaport

purpose

Getwork, executing in the address space· of a process giving
up control of a processor, chooses the process to which
control of this processor will be given. (This section
assumes that the reader is familiar with BJ.3.01-BJ.3.04).

Preface

The description of getwork that follows is divided into
three sections. The first section presents the basic
outline of the subroutine. This would be an adequate
description if it could be assumed that processes in the
system are never unloaded and that execution of the subroutine
will take place while:

1. The processor is completely masked against i~terrupts.

2. A global interlock is on which denies access to the
Process Exchange to all processes except the one in
which this subroutine is currently executing.

The second section presents the necessary additions to
the basic outline that enable the unloading of processes
to be accomplished. The final section is a complete
specification that describes the steps that must be taken
to allow more than one process to be concurrently executing
in the Process Exchange.

Basic Outline

A process that is about to stop running calls subroutine
getwork in the Process Exchange, in order to choose the
process to which the processor will be given. Basically,
getwork does nothing more than the following:

1. It chooses the highest priority process on the ready
list (see Section BJ.4.01).

2. It removes the calling process from the running list
and inserts the chosen process into the vacated entry.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.02 PAGE 2

3. It "drains" pre-emption interrupts. In order to
understand this step, one must be aware of the
difference between system interrupts and process
interrupts. This will be explained a little
further on.

4. It calls swap dbr (see Section BJ.5.01) on behalf
of the chosen-process.

5. When return is experienced from swap_dbr, getwork
returns to its caller.

It should be noted that the return from swap dbr is not
experienced until well in the future when a third process
(possibly one.of the original two) has chosen this original
process to run and called swap_dbr on its behalf.

Step number 3 above,states that pre-emption interrupts
are "drained''. Two types of processor interrupt exist
in Multics: system interrupts and process interrupts.
The pre-emption fnterrup~ is a process interrupt. System
interrupts are of interest to the processor itself whereas
process interrupts are of interest to the process executing
on the processor. Since a processor is masked against
process interrupts (actually all interrupts for this basic
outline) while executing in the Process Exchange, any
process interrupts remaining behind the processor interrupt
mask when control is switched to a new process, must not
be allowed to interfere with the new process since they
were not meant for the new process. In order to remove
a process interrupt from behind the mask the interrupt
must be allowed to occur (i.e., the processor must be
partially unmasked temporarily). In order to guarantee
that the interrupt causes no harm, the interrupt handler
must be notified about the change in process. Therefore
to "drain" a particular type of process interrupt, a switch
is set on and the processor temporarily unmasks this particular
interrupt. All process interrupt handlers routinely check
this switch before acting and take appropriate action
when they find it on. The switch is the drain switch
and it exists as a-aata item in the Processor Data Segment.
In getwork pre-emption interrupts are drained. The other
two process interrupts, the timer runout interrupt and
the quit interrupt, are drained in swap_dbr (BJ.5.01).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.02 PAGE 3

One serious problem arises in the outline above. The above
sequence is meant to execute with the Process Exchange
locked. If the ready list were empty, no other process
would be able to help replenish it. Therefore if the
ready list is empty, getwork unlocks the Process Exchange
and waits for some process to appear on the ready list.
When the Process Exchange is unlocked the complete mask
is removed from. the processor and a partial mask which
masks process interrupts is substituted. This partial
mask, which prevents quit interrupts, timer runout interrupts
and ~re-emption interrupts, prevents this proc~ss from
call1ng the Process Exchan~e recursively. A process executing
in getwork is already comm1tted to giving up its processor
and a recursive call into the Process Exchange would be
meaningless.

The calling sequence for getwork is simply:

call getwork;

and the stack used is the calling process' Process Concealed
Stack. Figure 1 illustrates the basic outline of getwork.

-Additions to Enable Unloading Qf Processes

The existence of unloaded processes in the system means that
the process chosen from the ready list may be unloaded.
The problem of switching control to unloaded processes
is faced directly by swap_dbr and only indirectly by getwork.
That is swap_dbr does the work involved with. the loading.
Only when swap_dbr is unable to accomplish the loading
(because of a shortage of core space) does getwork become
involved. If swap_dbr is unable to perform the loading
it performs an error-return to getwork. Getwork then
must try again by once more choosing a new process from
the ready list and calling swap_dbr on behalf of this
new chosen process. Figure 2 illustrates getwork with
the addition of an error entry.

Complete Specification Qf Getwork

With several processes possibly executing in the Process
Exchange concurrently, steps must be taken to coordinate
their actions. In particular, two general steps have
been taken throughout the Process Exchange. First, certain
interlocks and switches have been placed in the Process
Exchange data bases. By observing common rules about
the interlocks the various modules are able to guarantee
the inte~rity of the data with which they deal. Secondly,
at certa1n times while some of these interlocks are set,

= _ ..

i

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.02 PAGE 4

the processor referencing the locked data must be masked against
all interrupts. This is to prevent the possibility of
putting a processor into an infinite loop. (For a complete
discussion of coordination in the Process Exchange see
Section BJ.6.). It should be noted that the Process Exchange
global interlock is not one of those referred to in the
above. The ones mentioned above take the place of the
global interlock.

In order to fully understand the use of interlocking and
masking in getwork one must first understand the coordination
problems. Getwork faces three such coordination problems.

The first problem has to do with the use of the ready
list and the running list. These data bases are used
in several Process Exchange modules. In order to avoid
errors~ an interlock is necessary to control access to
them. Since the running list is always used in conjunction
with the ready list~ one interlock on the ready list will
suffice. This interlock limits access to one process
at a time. Since all interrupt handlers must be able to
use the ready lis~all interrupts must be masked whenever
the ready list is locked. That is 1 in getwork the ready
list must be locked before it is used and the processor
must be completely masked before the lock is set. The
lock is reset as soon as reference to the ready list is
complete and the previous processor mask is restored.

The second coordination problem has to do ~ith the fact
that a process appearing in the ready list m~y still be
executing in the Process Exchange. If control of one
processor were given to a process while it was still executing
on another processor~ disaster would follow., The disaster
would be a direct result of the fact that both instances
of the process would be using the same stack segment (process
concealed stack). In order to resolve this problem an
extra switch has been provided in the Active Process Table
entry of each process. This switch~ the intermediate-state
switch~ if on indicates that the process may be executing
in the Process Exchange irrespective of its execution
state as defined by other switches in the Active Process
Table entry. Clearly getwork should not choose a process
from the ready list if such a selection could possibly
result in two instances of the same process on separate
processors at the same time.

Such a situation could occur in only one way. It could
occur if a process (process A) executing in getwork were
to choose another process (process B) to run while process
B's intermediate-state switch was~·

.
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.02 PAGE 5

However process A could safely choose itself to run regardless
of the setting of its intermediate-state switch. Therefore
the strategy followed by getwork is clear. Getwork passes
over a process whose intermediate-state switch is on unless
the process executing in getwork and the process whOse
jntermediate-state switch is on are identical. -
The third coordination problem arises from the fact that
getwork does not remove a process from the ready list
once it has chosen the process to run. The removal is
accomplished in swap dbr when it is determined for sure
that control will actually be switched to this process.
In order to notify other processes that a particular process
has been chosen, getwork sets on the process-chosen switch
of the chosen process. This sWitch exists as a data item
in the process' Active Process Table entry. If getwork
experiences an error return from swap_dbr, all it need
do is reset this particular process-chosen switch.

Getwork can now be completely specified. Referring to
Figure 3, the steps are as follows:

1. The processor is masked against all interrupts.

2.

3.

4.

5.

6.

7.

The ready list is locked.

The highest priority process which has not already
been chosen is chosen and we proceed with step 4.
However, if the ready list is empty or if all processes
on the ready list are already chosen we unlock the
ready list, restore the previous mask, wait until
the state of the ready list changes and then go back
to step 1.

If the chosen process has its intermediate-state switch
off or if the calling and the chosen process are identi­
cal then the process chosen switch is set on. If the
cho~en process; intermediate-state switch is-on, then
the next process on the reaqy list is chosen and we
test it. ·

The calling process removes itself and places the
chosen process on the running list.

Pre-emption interrupts are drained.

The ready list is unlocked and the previous mask is
restored.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.02 PAGE 6

8. Swap_dbr is called~ An error-return goes to step 10.

9. Getwork returns to its caller.

The following steps are executed only if an error return
is received from swap_dbr.

10. The process chosen switch for the originally chosen
process is reset.

11. The processor is masked against all· interrupts, and
the ready list is locked.

12. The calling process puts itself back on the running
list.

13. This step is exactly the same as step 3 except that,
in order to prevent looping~ care is taken to prevent
choosing a process which swap dbr has already failed
to switch to. That is, the highest priority process
which has not be.en chosen and which has not already
caused swap dbr to fail~ is chosen~ we then go to
step 4. If-the ready list is empty or if all processes
on the ready list are already chosen or if we have failed
on all ready~ unchosen processes~ we unlock the ready list~
restore the previous mask~ wait until the state of the
ready list changes and then go back to step 1.

MULTICS SYSTEM-PROGRAMMERS .. MANUI\L SECTION BJ.4.02 PAGE 7

Ca 11 ge twork

-- Lock Process j4- Mask All

Exchange Interrupts

, ~"
Is

Ready Yes Unlock Mask Wait for - r..-List .. Process .. Process Ready list stat mpty?
Exchange Interrupts to change

Yes .,
Choose Top
Priority
Process on
Ready List

~
Remove Self .
and Place ..

,.....,
I

Chosen process -l~ Running ist
__. ,, .-

Drain ' .
Pre-emption
Interrupts

,
Call

Swap_dbr

-

•r

c -
Return

Figure 1. Basic Outline of.Getwork

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.02 PAGE 8

Put Self Back

on Running

List

Chosen Next
Highest Priori
Process on
Ready List_

Figure 2.

Call Getwork

Choose Top
Priority Pro­
cess on
Ready List

Remove Self and
Place Chosen
Process on
Running List

Drain

Pre-emption

Interrupts

Call

swap_dbr

Unlock

Process

Lock

Process

Exchange

Mask

Process

Interru ts

Basic Outline of Getwork with Additions to Enable

Unloading of Processes

Mask

All

Interrupts

Wait for
Ready List
State to
Change

MULTICS SYSTEM-PROGRAMMERS' MANUAL

r--

Reset Process­
chosen Switch
for Chosen
Process

Save Mask.

Mask All

Interrupts

Lock
Ready
List

-·Put Self
Back on
Running
List

Choose next
Highest
Priority
Process

Cal Getwork

Save Mask.
Mask All
Interrupts

Lock
Ready

List

Choose Top
Priority Pro­
cess from
Ready_ List

Yes

Figure 3. Complete Flow Diagram of Getwork

SECTION BJ.4.02 PAGE 9

Unlock

Ready

List

n for Chosen

Wait for
Ready List
State to
Change

Restore

Previous

Mask

Place Choice
on Running

.---.~List in Place
of Self

Drain
Pre-emption

Interrupts

Unlock

Ready

List

Restore

Previous

Mask

Call Swap_ dbr

(chose~proces ,

error_ return)

(.._ __ R_e_t_u_r_n _ _.)

