
t 

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BJ.2. 00 PAGE 1 

Published: 10/01/68 
(Supersedes: BJ.2.00 (old BJ. 1 .00), 02/20/67) 

Identification 

Overview of Process Wa'it 1and Notify 
R. L. Rappaport, Michael J. Spier 

Purpose 

Proc~~ses exec:uting in behalf of the system in the hardcore 
ring sometimes have to abandon their current processor 
and revert to the "waiting" state, waiting for some system-event 
(such as the unlocking of a system-wide data base, or 
the arrival of a page from the drum) to happen. The Traffic 
Controller subroutines wait, notify, and addevent provide 
the mechanism by which a process can either enter the 
waiting state (wait) or release some other process from 
that state and put it back ori the ready-list (notify). 

I ntroduC:tion. 

The. Traffic Controller's interprocess communication entries 
block and wakeup (see BJ.3) provide the means necessary 
in order to allow a process to either give its processor 
away or to restore another process into the ready-list. 
Theoretically, subroutines block and wakeup would suffice 
to handle all cases of process wait and notify; however, 
experience has shown that block and wakeup are in themselves 
too primitive, functionally, and that to have a Process 
Wait and Notify (PWN) mechanism that makes use of these 
primitives was too costly from an efficiency point of 
view. 

'_}, .. ' 

To be specific, the purpose of the ANN module is to "keep 
book" on all waiting processes, to remember which process 
is waiting for what event and to make sure that whenever 
a certain event happens, only the processes that are·actually 
waiting for that event be "notified'. ANN is concerned 
with "system events" (e.g., the unlocking of a system 
table, the arrival of a page from the drum) which are 
guaranteed to happen within a predictable period of time, 
normally measured in milliseconds. The main reason for 
having a process ~o into the waiting state is that of 
maintaining effic1ent processor-resource management. 
The cost of going to wait must be fractional compared 
with the amount of processor time saved. An additional 
characteristic of system events is that a process wi 11 
never wait for more than a single system-event at a time. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.2.00 PAGE 2 

Consequently~ the cheapest way to provide a PWN facility 
is to thread the waiting-process' APT entry into a wait-list 
associated with a specific event~ and to associate the 
head of that list with the event name so as to allow the 
notifying process to find the list and restore the waiting 
processes into the ready state. 

The Process Wait Table (PWT~ see BJ.1.03) is a table containing 
a group of relative pointers to a collection of event 
threads running through the APT. It is a wired-down table 
in segment <tc data> and its size is an agreed-upon constant 
(actually a prime number~ to faci 1 i tate hash-lookup.) 

Let us suppose that there are N entries in the table. 
Events are communicated to PWN by name and all processes 
waiting for an event named A will be hanging off the thread 
pointed at by a PWT entry associated with A. In order 
not to have to provide a unique PWT entry for each possible 
system-event~ we must perform a mapping from the set of 
all possible event names into the set of integers from 
1 toN (table size.) In this way~ processes waiting for 
events A and A' may both be placed on the same thread 
and may be notified incorrectly that their event has occurred. 
However~ if the PWT table size is large compared to the 
number of loaded processes (which alone may wait for a 
system-event) and the mapping from event names to numbers 
is done so as to evenly distribute the names over the 
numbers~ the conflicts should be kept to a minimum. 

A call to wait is considered to be 11 involuntary" from 
the process' point of view~ because it is assumed that 
more often than not a process will be waiting for the 
arrival of a page into core; the process gives the processor 
away for reasons of system efficiency~ yet were it not 
for the missing page it would be capable of doing some 
useful work for itself. In recognition of this fact~ 
when a waiting process gets notified, it is put at the 
head of its corresponding queue on the ready list~ thus 
giving it priority over all other processes in that queue. 
Also~ for the same reason~ waiting processes do not lose 
their eligibility (see BJ.6). 

The above-described strategy is designed to assure the 
smoothest and most efficient processor-resource management 
whenever a process is executing in the hardcore ring; 
this is of utmost importance considering the fact that 
a process may spend an estimated half of its virtual processor 
time in ring o. 



! 

,-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.2.00 PAGE 3 

Implementation 

An entry in the PWT contains two items, a pointer to the 
head of the event list (which may assume a zero-value 
if there is no list) and a flag (which may assume one 
of the two values ON/OFF). 

A PWT entry is said to be inactive if its pointer is of 
zero-value and its flag is set to off; otherwise it is 
said to be active. 

inactive = (pointer=O) and (flag=off) 

active ~ inactive 

Depending upon the state of an entry, the three PWN subroutines 
operate according to the following algorithm: 

ADDEVENT (A) 

WAIT (A) 

NOTIFY (A) 

always sets entry A's flag to ON 

if A inactive: returns 

if A active: puts itself on thread A, 
abandons processor 

if A inactive: returns 

if A active: de-activates A, puts all 
waiting processes on ready 
list 

A typical way of using the PWN faci 1i ty is outlined belO\tll: 

At some point in a computation we reach a point where 
we do not wish to continue until a particular condition 
is satisfied. Therefore we perform a test to see if the 
condition is satisfied; if yes, we simply continue and 
if not we arrange to wait for the condition to change 
in the following way. Starting from the original test: 

1. Test condition. If true go to step 5. 

2. If not true call addevent to activate event. 

3. Test condition again. If still not true call 
wait and upon return go to step 1. 

4. If the retest was successful call notify to 
deactivate the event and possibly wake up 
waiting processes. 

5. Continue. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.2.00 PAGE 4 

Sometimes in a computation we become aware of a condition 
in which others may be interested. In this case we call 
notify to "broadcast" the good news. 

The test of whether or not an event is active provides 
a.n interaction between subroutines wait and notify. Without 
it, it would be possible for a process to put itself on 
an event-list and give its processor away right after 
that event was notified by some other process. If this 
were the last time for this event ever to occur, the waiting 
process would never run again. According to the PNN algorithm, 
notify deactivates the event. A process calls wait only 
after it has previously called addevent, which activates 
the event. When the process calls wait and finds the 
event inactive, it knows that someone has notified all 
the processes waiting for that event and consequently 
immediately returns. 

The three PWN subroutines are described in detail in sections 
BJ.2.01-03, respectively. 


