
MULTICS SYSTEt'-1-PROGRAfvlt·1ERS' MANUAL

Identification

Overview of the Process Exchange
J. H. Saltzer

Purpose

SECTION BJ.3.00 PAGE 1

Published 12/766

The 11 Process Exchange" is a group of supervisor modules
concerned with dispatching and scheduling procedures among
processes. The Process Exchange is driven entirely by
closed subroutine calls from other supervisor modules.,.
usually as a result of interrupts.

The Process Exchange_ is called for one of four different reasons:

1. A process cannot proceed until another process or
hardware device sends a signal.,. and it wishes to give
up the processor (glo~) for the interim.

2. A running process vvi shes to \.i!ake up another process
which may be blocked.

3. A running process wishes to block another process
which may be ready or running.

4. A running process may have just taken a particular
system interrupt (timer runout or pre-emption)
which implies that it must reschedule itself to
continue to run lat~r.

These four calls are made to four entry points named respectively.
Block.,. vJakeup.,. Quit.,. and Restart. A process calling the
Process Exchange will experience a return.,. although in
the case of Block and Restart.,. the return will usually
occur much later; other processes will have used the processor
in the interim. Upon a return from the Process Exchange.,.
the interval timer is running. As VJe shall see.,. the process
may use the processor for vJha teve r purpose it 1 i kes unt i 1
either a process interrupt occurs or it cannot proceed
pending a I.AJakeup signa 1 •

The basic liardvJare mechanism by I.AJhich a processor svJitches from
one process to another is the "Load Descriptor Segment
Base Register" (LDBR) instruction. At the instant the
descriptor segment base register is reloaded, the address
space (the t rad it iona 1 11 core image 11) seen by the processor
changes; the only explicit memory of the previous process
and its address space remains in the processor registers.

MUL TICS SYSTEM-PROGRAMr~ERS' MANUAL SECTION BJ.3.00 PAGE 2

In the Process Exchange, the LDBR instruction is embedded
in a subroutine named S~;vap-DBR. This subroutine is called
using a standard "Call" sequence with a standard stack.
SvJap-DBR begins with a standard Save sequence. Hovvever,

. in the course of its execution, it reloads the descriptor
segment base register, thus switching to the address space
of the process, and switches to the stack of the new process.
If we assume that every process includes subroutine Sl.vap-DBR
in its descriptor segment, and that this is the only technique
of switching betv..reen processes, then it is safe to perform
a Return sequence with the new process' stack. The Return
will return to th~ last place that this new process called
Swap-DBR. The values of the descriptor segment base register
and pointers to the stack are stored in an Active Process
Table, which contains an entry fo·r every active process.
We note there are problems in switching to a "new" process
which has never had an opportunity to call Swap-DBR.
An equally difficult problem arises in switching control
to a process whose descriptor segment has been paged out
of core memory. (That is, it is no longer loaded.) Section
BJ.5 provides a complete discussion of process switching
and loading . .
Processor Dispatching: Getwork and the ~cheduler.

Swap-DBR is the only procedure in the system where process
svvitching happens. It is used by the processor dispatching
module, named Getwork.

Getwork is ultimately called whenever a pror.ess releases
a processor for any reason; its function is to assign
the processor a new task. For this purpose the Process
Exchange maintains a "ready list,'' a list of all processes
ready to run, in the order they are to be run. The ready
list consists conceptually of pairs of entries; a process
identification and a running time limit imposed by the
scheduler. It is in fact implemented as a thread through
the Active Process Table. ·

Let us suppose that Process K is running, and calls Getwork.
Subroutine Getwork performs the following· sequence:

1. Identify the highest priority process on the ready
1 i s t (ca 1 1 i t J).

2. Call Swap-DBR giving as an argument "J11 •

Swap-DBR wi 11 return to wherever it \vas called last in
process J, namely to the copy of Getwork belonging to
process J. If, at some later time ~rocess K should appear
at the top of the ready list and some ~ther process calls
Getwork, control will appear in process K as a return

MUL TICS SYSTEM-PROGRAt1,MERS' MANUAL SECTION BJ.3.00 PAGE 3

to Getwork from Swap-DBR. At·this point, Getwork returns
to its caller in process K.

The ready list is kept in order by a module named Schedule.
The Process Exchange follows the rule that every process
s·chedules itself, since the process kno~tJs factors which
influence its own scheduling better than anyone else.
This rule can allow some processes to use a different
scheduler than others. Generally, then, the scheduler
evaluates this process' request in comparison with the
present status of the ready list, establishes a time limit
for the process, and slips it into the ready list at an
appropriate point. The time limit represents the maximum
amount of processor resource that this process should
be allowed to use before its priority is reconsidered
by the scheduler. The time limit is enforced by a hardware
device capable of generating a process interrupt, the
"time-out interrupt.''

A simple scheduler might follow these two rules:

1. Time limit= Q milliseconds, (Q constant)

2. Put process at end of ready list,

resulting in a "round-robin." A more elaborate scheduler,
for example, a multi-level priority algorithm, can be
plugged into this position instead. One option which
is available to the scheduler is to force some processor
to be relinquished by generating a process :nterrupt.
A process interrupt generated by the scheduler will be
called a "pre-emption interrupt." Section BJ.4 describes
in detail the processor scheduling mechanisms and algorithms.

Block, ltJakeup, ,Quit, and Restart g_Qtries~

The remainder of the Process Exchange consists of the
four modules which accept the four types of calls, Block,
Wakeup, Quit, and Restart. As an aid to visualization,
figure one is a block diagram of.the Pro~ess Exchange.
In this figure, solid arrows are closed subroutine calls;
dotted arrows are data paths. Restart is called by the
Interrupt Interceptor when a timer runout or pre-emption
int~rrupt occurs; the meaning of this interrupt is that
the scheduler would like to have the processor back for
someone else to use. The Restart module consists of two steps:

1. Call Schedule to reschedule this process to continue
to run later. ·

2. Call Getwork to put the processor to work on the
highest priority job avail~ble.

MUL TICS SYSTEM-PROGRAMf,iERS' MANUAL SECTION BJ.3.00 PAGE 4

When the processor enters Swap-DBR, of course it disappears
from this process. Sometime later some proce~sor reappears
and performs the return from Svvap-DBR.

The operation of the l;Jakeup and Block entry points will
be more easily understood if we first review their intended
use. ~'Jhen a process cannot proceed unti 1 some other computation
is finished or some signal arrives,. it first makes arrangements
for one or more other processes to make a vJakeup ca 11
to the Process Exchange; it then calls Block. It/hen a
process receives a return from Block, it can assume that
some other process has called the l;Jakeup entry for it.

Stored in the Active Process Table entry for this process
is the ltJakeup_ \rJa i't i ng Swi ten. The Wakeup l,rla it i ng switch
is set on by another process whenever it sends a wakeup
signal to this process.· This switch is used to prevent
a race to entry point Block after a process arranges for
a wakeup. If the switch has turned QQ. by the time the
process gets to Block, Block will return immediately.

The Block module itself is quite simple both in purpose
and in function. l:fnen a process calls Block, it has effectively
committed suicide unless it first delegates some other
process positive responsibility for a later Wakeup call,
since the Block module immediately calls Getwork to give
away the processor. (The difference between this action
and the corresponding action in Restart is that .in Restart
the scheduler was called first to put the process back
on the list of things to do.) Actually, before Block
gives alf.Jay the processor, it checks to see if the 11 ~'/akeup
Waiting" switch is QQ.. If so, it resets it and returns
immediately to the caller.

Below we wil.l see in detail how a call by another process
to the Wakeup entry of the Process Exchange can cause
our blocked process to be placed on the Ready List. For

.the moment, let us assume that this has happened and Getwork
performs a return. This return to the Block module means
that some event this process is waiting for has happened.
The Block module therefore returns to its caller outside
the Process Exchange. to..s before, the entry to Sv,rap-DBR
caus~s the processor to disappear; other everits in the
system (e.g., call to \'/akeup, see below) can cause a processor
to reappear in Swap-DBR ~nd perform a return.

Tt1e process I:Jakeup entry to the Process Exchange is complex
because the process being signaled may be ready, running,
or blocked. The first step is to set the t'.'akeup V!aiting
Slf.Jitch on.for the process being VJakened, and check its
execution state. If the process is not blocked, VJakeup

MULTICS SYSTEM-PROGRAHMERS' MANUAL SECTION BJ.3.00 PAGE 5

returns to its caller. The meaning of this condition
is that the process being signaled has arranged for a
wakeup~ and the wakeup arrived before the process got
to Block. Recall that if the process arrives at Block
and finds its \'Jakeup l.rJaiting Switch .QD., it wi 11 receive
its wakeup immediately.

If the process is blocked, it must be allowed to schedule
itself to run later. lt/akeup therefore calls a special
entry in Swap-DBR named "Ready-Him''. This entry does
the fo 11 owing:

1. Switch to the descriptor segment of the awakening
process.

2. Call the scheduler to put the process on the
Ready List.

3. Switch back to the descriptor segment of the
ca 11 i ng process.

4. Return to the \rJakeup modu 1 e.

Note that, since tT1e descriptor segment of the avvakening
process vvas used for the ca 11 to the schedu 1 e r ~ the awakening
process' scheduler is used~ not the caller's.

The Ouit Entry

The Quit entry is used to take another process into blocked
status, if it is not already blocked. The procedure is
straightforward: · ·

1. If the process in question is already blocked,
nothing need be done. Quit returns to its caller.

2. If the process in question is running, the Quit module ..
resets the \vakeup \·Jaiting switch for the process, and
generates a process interrupt, the "Quit interrupt,"
for the appropriate processor. The meaning of this
interrupt is that the process should call Block; in
the description of the Interrupt Interceptor, we see
exactly how this call comes about.

3. If the process being blocked is ready, it is merely
removed from the ready list and its Active Process
Table entry modified to shmv that it is blocked.

Although the Quit module does not call other Process Exchange
modules, it is considered part of the Process Exchange
because its activities must be coordinated and interlocked
with other Process Exchange modules.

MUL TICS SYSTH1-PROGRAMMERS' MANUAL SECTION BJ.3.00 PAGE 6

Use of the Process Exchange

The Process Exchange provides only the most primitive
functions required to implement processor multiplexing
and inter-process control communication. Although it
(together with the Interrupt Interceptor) could be used
directly for these purposes~ in a practical system two
additional groups of modules must be added: A validator~
and an inter-process communication fa_ci llli. The val idator
is a procedure which checks the authority of one process
to signal another; the inter-process communication facility
provides a convenient mechanism for passing certain data
as well as control signals between processes.

Both of these facilities can be implemented outside of
the Process Exchange~ therefore they are described separately
in section BD.8.

On the other hand~ the Process Exchange is also used by
the Basic File System~ to block a process until a missing
page is available~ for example. To minimize the number
of procedures \<Vhich must be ahr1ays in core memory~ the
Basic File System calls the Process Exchange directly.
Validation of calls is not an issue in the Basic File
System, since it is at the same level of 11 trustworthiness 11

as the Process Exchange itself. Similarly, an elaborate
inter-process communication mechanism is not required
for the simple functions needed by the Basic File System.

The diagram in figure t\JIJO illustrates this pattern of usage of
the Process Exchange.

Jnterlocking and Masking in th~ Process Exch~nge.

In this overview we have so far ignored completely a difficult
problem. The Process Exchange is designed to be used
by several processors simultaneously, and each is capable
of being interrupted and re-entering the interrupted procedure.
We have neglected completely the issue of keeping the
multiple processors out of each other's (and indeed their
own) \'Jay.

There is in fact a very simple solution to this problem, as
follows: A system-wide interlock, based, for example,
on the read-alter-rewrite cycle capability of the 645
memory, is placed at the entry to the Process Exchange.
This interlock must be tested and set by any processor
desiring to enter the Process Exchange. \'Jhen the processor
leaves the Process Exchange (perhaps executing in another
process) it resets the lock. If a processor coming in
finds the interlock QQ., it is expected to loop, vJaiting
for the interlock to be switched of£ by some other processor

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.00 PAGE 7

which is presumably already inside the Process Exchange.

In· order to guarantee that a processor does not set the
interlock, enter the Process Exchange# take an interrupt#
and attempt to re-enter the Process Exchange (presumably
looping forever on the interlock) a processor is completely
masked against all possible interrupts while inside the
Process Exchange; It is instructive to note that in a
single-processor system only masking is necessary--the
interlock can in principle be dispensed with 1 except as
a debugging aid. It is also instructive to note that
7094 CTSS, a single processor system~ uses both an interlock
and a mask, and is occasionally found stuck on the interlock.
This effect can be the result of either hardware failures
or errors in system programs.

The simple interlocking mechanism we have described would
be completely adequate except for the possibility in a
several processor system that the Process Exchange could
become a potential bottleneck, delaying interrupt response.
This is because the simple interlock forces exclusion
of all but one processor at a time.

To prevent such a possibility~ one can use instead a set
of process-by-process interlocks in the Active Process
Table. This technique 1 while addi·ng considerably to the
complexity of the Process Exchange~ means that two processors
with independent objectives can execute in the Process
Exchange simultaneously~ and that interrupts may be allowed
except in certain well defined critical areas. Section
BJ.6 describes in detail the structure of this more elaborate
interlocking strategy. Also 1 each of the sections of
BJ.3 which follow are divided into two parts, describing
the way the module works assuming the simple system-wide
interlock and total masking, and then describing the additional
tests necessary under the limited interlock strategy.

It is planned that the initial implementation of the Process
Exchange will in fact use only the system-wide interlock
and total masking.

J

I
I
' J

I
I

I

I
. 1.

l
i

.f
i
I·
j
j­
!

!

I
I
I
' i

0

..

r-
I
I
I
I
I
I
I
.I

I
I

·I
I
I
I

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BJ.3.00 PAGE 8

- I

Ge tvJOr k -- Scheduler

.).

Block Res ;:art Qui t

Ready-Him

\'Ia keu p

I
I
I
I

L - - - { - -t-_--- - - - - J

Figure 1 - -Block diagram of Process Exchange •

•

. MUL TICS· SYSTEfvl-PROGRAMMERS' fv't.ANUAL

Inter-~
proce~s

procedure ,

linker,
I/O

ommun~ca validato
1------'::>l t ion I---~IH

system,
facility

etc.

---> is a closed subroutine call.

SECTION BJ.3.00 PAGE 9

Fault <---f
/ _ (Faults .

Interceptor ...---- I
.,.,

(missing page)

Basic

File

System

Process

Exchange

Interrupt

Interceptor
: J Interrup

Figure 2. Usage of the Process Exchange

