
, 

,, 

I 

,_.., 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.00 PAGE 1 

Publisheda 10/01/68 
(Supersedes: BJ.3.00, 12/07/66) 

Identification 

Overview of Interprocess Communication Entries 
Robert L. Rappaport, Michael J. Spier 

F'uroose 

During the 'life' of a Multics process, the need arises 
at least once for this process to have some information 
furnished by some other process, we say that this process 
is engaged in 11 interprocess communication11 • I nterprocess 
communication implies a synchronization of processes, 
a process might have to 'pause' (idle) for the other process 
to communicate the information. By convention, for reasons 
of efficiency, such a process gives its processor away, 
or 'blocks' itself, until the awaited information has 
been communicated, or until that specific 'event' has 
occurred. It is then taken out of the blocked state and 
put into the ready state, or 'awakened'. The Traffic 
Controller entries block and wakeup provide those basic 
functions. 

Discussion 

An event is anything that is observed by a process and 
which might be of interest to another process or maybe 
another procedure of the same process. An event is always 
associated with some information to be communicated to 
the interested (receiving) process. Examples of events 
area the terminating of a computation, the unlocking 
of a shared data-base or the arrival of new input from 
an I/O device. These events happen outside of the hardcore 
ring and are known as 'user-events' to distinguish them 
from 'system-events' which happen in the hardcore ring 
only and which ar~ discussed in section BJ.2. 

Process 'A' reaches a point in its execution where it 
cannot proceed until event 'E' has occurred (or in other 
words, until some information is furnished by some other 
process.) It therefore calls the Traffic Controller's 
entry block and abandons the processor. Process 'A' is 
now in the blocked state, which means that it no longer 
participates in the race for a processor, and will remain 
in that state until awakened by some other process. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.00 PAGE 2 

Process 'B' now executes, and observes an event. This 
could be event 'E' for which process 'A' is waiting~ it 
could also be any other event 'Q' in which process A' 
might be interested some time in the future; the point 
is even though process 'B' knows that the observed event 
is' of interest to process 'A', it has no way of determining 
what process 'A's current state is, whether it is waiting 
for some event or whether it is executing. Consequently, 
the notification mechanism must be such as to allow the 
preservation of all communicated information even though 
it might not be of immediate interest to the receiving 
process. 

However, assuming that process 'B' did observe event 'E', 
it calls the Traffic Controller subroutine 

ca 11 wakeup ('A ', ' E ') 

where 'A' i~ the target process' 10 and 'E' is the event 
information. 

In order to block itself, process 'A' has called 

call block (interaction_switch, event) 

where 'interaction_switch' is a flag to indicate whether 
or not the process is blockin~ itself awaiting human response 
(from a console). Process 'A now wakes up, returns from 
the Traffic Controller and finds in 'event' the information 
communicated by process 'B' (namely event 'E'). If that 
information is the one it has waited for, it continues 
its interrupted execution, otherwise it stores that information 
somewhere in its memory-space, and calls block again. 

Process Synchronization 

Both subroutines block and wakeup manipulate the Active 
Process Table (APT); normally, block puts the APT entry 
of its own process into the list of blocked processes, 
wakeup finds the APT entry of the target process in the 
blocked-list and restores it into the ready-list. However, 
it is not guaranteed that a call to wakeup in behalf of 
some process will actually find that process in the blocked 
state; also, it is not guaranteed that if a process calls 
block because it is waiting for some event to happen that 
this event will happen in the futuer, it might already 
have happened in the past. Evidently, some further interaction 
is needed between subroutines block and wakeup to insure 
that event signals do not get lost, and that a proces~; 
will not mistakenly block itself, never again to be awakened. 



-­,. 

, 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.00 PAGE 3 

This interaction is provided by the process' 'wakeup-waiting' 
flag. This flag, which can assume one of the two values 
on/off is located in the process' APT entry. A call to 
wakeup always sets this flag to 'on'. Then, if the process 
is blocked, it will be put into the ready-list, else it 
is left in whatever state it is. A call to block will 
actually cause the process to abandon its processor only 
if its wakeup-waiting fla~ is 'off'; the flag's 'on' state 
indicates that an event s1gnal (which might be the one 
awaited) has already occurred, and consequently block 
returns to its caller. Upon returning, subroutine block 
always resets its wakeup-waiting flag to 'off'. 

In order to insure that no more than one process at a 
time manipulate the APT, that table is protected by an 
interlocking convention which is respected by all the 
processes in the system. The process that currently manipulates 
the APT sets a lock-word to a non-zero value, all other 
processes which want to access this table loop-wait until 
that word is reset to zero. This insures that there will 
never be any conflict between an awakening and a blocking 
process which might both try and 'grab' the wakeup-waiting 
flag at the very same instant. 

Transmission of Event Information 

Associated with block and wakeup is a paged system-wide 
data-base known as the Interprocess Transmission Table 
(ITT). This table contains as many event queues as there 
are receiving processes in the system. Every receiving 
process has in its APT entry the head of its ITT event 
queue. A call to wakeup causes the new event information 
to be appended to the target process' ITT queue. 

Subroutine block, before returning, detaches the ITT queue 
from the process' APT entry (providing the process with 
a fresh, zero-length queue) and returns the detached queue 
to its caller, which then copies the queue's contents 
into its own memory space and frees the ITT space for 
future use. 

Subroutines block is discussed in detail in section BJ.3.01 
and subroutine wakeup is discussed in BJ.3.02. 

Subroutines block and wakeup are called by the Interprocess 
Communication (IPC) facility only. IPC and the ITT are 
described in sections BJ.10. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.00 PAGE 4 

Sometimes, a process has to be able to determine the state 
of some other process. For example, a process which intends 
to destroy another process can proceed with the destruction 
of the target process' directory only after that process 
has actually entered the stopped state. 

call status (process_id, execution_state, load_state) 

returns the current execution and load state of 'process-id'. 

' 


