
r· 

__.. 
. 1 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.03 PAGE 1 

Published: 07/19/67 

Identification 

The Initial Scheduler 
A. Evans 

Purpose 

It is the scheduler's job in Multics to place the process 
for which it is operating into the ready list_ the queue 
of processes which are ready to run. The process' position 
in this queue is dependent on its relative priority with 
respect to other processes in the queue. In addition_ 
the scheduler sets the maximum execution "time" the process 
will be permitted to run when it comes to the head of 
the queue. Multics in its initial implementation uses 
a very primitive scheduler which operates on a simple 
round-robin basis. In general, a process to be scheduled 
is assigned a fixed amount of time and placed at the end 
of the ready list. An exception is made 'for a process 
which, because it has set interlocks on hardcore ring 
system-wide data bases, is entitled to temporary priority. 
Such a process is placed at the head of the ready list. 

Pref1ce 

An overview of the operation of scheduler is given in 
Section BJ.4.00, with which familiarity is assumed. However_ 
some simplifications are possible in this initial version. 
In particular, the priority of the process being scheduled 
is independent of all considerations of other processes 
in the system or of information about system loading. 
Either the process has set interlocks on critical data 
bases, in which case it goes at the head of the queue, 
or not, in which case it goes at the tail of the queue. 
Further, BJ.4.00 specifies calculating the priority before 
interlocking the data bases, to keep to a minimum the 
time the lock is set. The closest concept in this initial 
scheduler to the calculation of priority is the examination 
of the block_lock_count to test for temporary priority_ 
and this test is so simple that it is done while the lock 
is set. 

Detail! of Op~ratign 

In the following description, a reference such as 11 time 11m! t for 
the current process11 refers to tc_data$apt.e~try(i).time_11mit, 
where i is the index of the entry in the act1ve process 
table 1APT) of the current process. The APT is described 
in· detail, with its complete declaration, in Section BJ.1.01. 



·,.-., 
•I 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SE~TION BJ.4.03 PAGE 2 

' 

The ready list for the initial scheduler is discussed 
in Section BJ.4.05. The index in the APT of "the current 
process" is in the Process Data Block at pds$apt_index. 
(See BJ.1.04.) 

The scheduler performs the following: 

1. Set the time-limit item in the APT for the current process 
to x cycles. where ~ is a constant set by the system 
administrator. 

2. Save the current processor mask and mask the processor 
against all interrupts. 

3. Lock the current process' state switches (ready_sw and 
running sw) by interlocking its state_lock. If these 
switche~ are already locked. it is necessary to wait 
in a loop until they are free. 

4. 

5. 

6. 

Set the state to ready. That is. set ready sw in the 
current entry to "1ub and running_sw to "O''b. 

Lock the ready list by interlocking the ready_list_lock. 
If the ready list is already locked. it is necessary 
to wait in a loop until it is free. 

Put the current process (i~e., the process being 
scheduled) onto the ready llst. If the ready llst 
is empty. the current process is merely inserted. 
Otherwise, its position in the ready list is dependent 
only on whether or not it has temporary priority. which 
is determined by examining pds$block_lock_count. If. 
this quantity is non-zero, the process has interlocks 
set on common data bases and is entitled to temporary 
priority. Do one of (a), (b) or (c). 

a) The process is not entitled to temporary priority. 
For the current process, set ready_list_frwd to zero 
and ready_list_bkwd to the value now in ready_list_tail. 
In the entry pointed to by ready_l ist_tail. set 
ready 1 ist_f,rwd to point to the current process. 
FinalTy. set ready_list_tail to the current process. 

b) The process is entitled to temporary priority and 
so is to be placed at the head of the ready list. 
For the current process, set ready_list_fhWd to the 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.4.03 PAGE 3 

value currently in ready list_head and ready_list_bkwd 
to zero. In the entry of the process pointed to 
by ready_list_head, set ready list_bkwd to point 
to the current process. FinaTly, set ready_list_head 
to point to the current process. 

c) The ready list is empty. Set ready_list_head and 
ready_list_tail to point to the current process, 
and set ready_list_frwd and ready_list_bkwd of 
the current process to zero. 

7. Unlock the ready list, by setting ready_list_lock to zero. 

8. Unlock the process state switches, by setting the process~ 
state_lock to zero. 

9. Restore the processor mask to the value saved in step 
No. 2, above. 

10. Return to the caller. 

Qiscussion 

The quantity set in step 1 is the 24 bit value which will 
be loaded into the hardware interval "timer". This latter 
is a register which counts down one each time the processor 
accesses memory. When the count reaches zero, a timer 
runout fault occurs whose effect is ultimately to cause 
the running process to schedule itself for later execution 
and then to block. (See BK.3.07 for information about 
the interval timer and the immediate processing of the 
fault it creates, and BJ.3.04 for the remaining processing.) 
In the initial scheduler all processes are always assigned 
the same pennitted execution at each scheduling operation. 
The quantity is in the Traffic Controller Data Block (see 
BJ.1.08) at tc_data$time_limit. 

The masking and unmasking of the processor in steps 2 and 
9 are done by the procedure master_mode_ut$set_mask, described 
in Section BK.S.OT. 

The interlocking in steps 3 and S is done, ultimately, with 
the 645 opcode ~--!lore a-register sonditionally. 



·~~ MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.03 PAGE 4 

In steps 3 and 5 there is the unusual procedure of a fully 
masked processor waiting in a loop for an interlock to 
be released. Such an action may be catastrophic. unless 
it is certain 

(a) 

(b) 

that the lock was set by a process currently 
executing in another processor, and 

that it will be released by that process before 
that process can be interrupted or go blocked. 

(If the other process could block with the lock set. the 
next process to run might need the ready list. There 
would then be a fatal hangup.) In the present case. all 
necessary conditions are met. By convention, a process' 
state switches and the ready list are only locked by a 
processor that is fully masked. and the interlock is released 
before unmasking. 

It should be clear that the processor m~;! be fully masked 
while the scheduler is using the ready 1st. Any interrupt 
received will probably result in the initiation of a wakeup 
for some process -- the one responsible for the interrupt. 
But wakeup (see Section BJ.3.02) involves calling the 
scheduler. requiring access to the ready list. BJ.6 contains 
a detailed discussion of interlocks in the process exchange. 

In step 6. the order of setting the various switches is 
not critical. since the processor is masked during this step. 


