
MULTICS SYSTEM-PROGRAMMERS' fiANUAL SECTION BK.3 .0.3 PAGE 1

Publisheda 09/29/67
(Supersedesa BK.3.03, 06/13/66)

Identification

The Fault Interceptor
Chester Jones

Purpose

The Fault Interceptor Module is the interface between ·
the hardware fault mechanism and the procedures for handling
the various fault conditions. The Fault Interceptor Module
is responsible for saving the processor state when that
processor faults, for calling the appropriate procedure
for handling the fault, and for restoring the processor
state after control .returns from the fault handling procedure.
The supervisor protection mechanism (Section BD.9) requires
that crossing a wall in either direction be detected by
a fault. Since it contains parts of the wall crossing
mechanism, the Fault Interceptor Module is accessible
in every ring in the sense that it can be entered without
first crossing a wall, and it is able to switch rings
when necessary.· The Fault Interceptor Module must execute
privileged hardware instructions and inhibit interrupts
during certain crucial operations. Therefore, the Fault
Interceptor Module is a hand-coded, master mode procedure
that can be entered ~ as a result of a hardware fault
condition.

Summarl! .Qf. the faylt Int~rcegtor Actions.

When a Multics processor generates a fault, control passes
(automatically, through tne processor fault vector) to
the fault Interceptor Module which executes as part of
the process that is running at the instant the fault occurs.
While executing within the ring in which the fault occurs,
the fault Interceptor Module temporarily saves the process·or
state in the Process Concealed Stack (Section BJ.1.05)
that belongs to the running process and makes space available
for safe-storing the processor state should another fault
occur. Thent tne actions of the Fault Interceptor Module
vary, depend ng on the probable cause of the fault.

For process faults, the Fault Interceptor Module performs
the following stepsa

1. Determines the number of the protection ring
in which the fault is to be handled. If that
ring number is not the same as the ring in
which the fault occurred, then the FIM calls
the Gatekeeper to switch to the appropriate ring.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE 2

2. Copies the safe-stored processor state into the paged
stack for the ring in which the fault condition is
to be signalled.

3. Uses the paged stack for that protection ring to call
signal to indicate the occurrence of that fault
condition.

4. Following a return from signal, copies the machine
conditions from the paged stack into the Process
Concealed Stack.

5. Checks the validity of the safe-stored processor state.

6. Switches back to the ring in which the fault occurred
if necessary.

7. Restores the processor state to return control to the
point at which the fault occurred.

For system faults (except for missing-page faults, connect
faults~ and timer runout faults), the Fault Interceptor
Module performs the following steps:

1. Switches control to the hard core ring.

2. Switches from the Process Concealed Stack to a paged
stack in the hard core ring.

3. Calls the procedure for handling that fault.

4. Switches back to the Process Concealed Stack from the
paged stack in the hard core ring.

5. Switches control back to the ring in which the fault
occurred.

6. Restores the processor state to return control to the
point at which the fault occurred.

(For a description of the actions of the Fault Interceptor
Module in response to missing-page faults, timer runout
faults, and connect faults, see Sections BK.3.06, BK.3.07,
and BK.3.08 respectively.)

Actions of the Fault Interceptor Module.

1. The processor state is stored in the current interrupt
frame of the Process Concealed Stack. Pointers to the
current interrupt frame are maintained at the base of the
Process Concealed Stack. The processor state is stored
in four steps:

/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE 3

2.

a.

b.

c.

d.

The processor control unit is stored (store control
unit instruction) using the scu pointer. (This
instruction is executed in the processor fault
vector.)

The arithmetic registers are stored (store registers
instruction) using the sreg pointer.

The address base registers are stored (store bases
instruction) using the stb pointer.

The simulated ring register contents are obtained
from the Process Data Segment (Section BJ.1.03)
and stored. (Actually, this step is not taken
unti 1 after the linkage base registers are
established. Eventually, if a hardware ring register
is added to the GE-645, that register should be
stored with the processor control unit using an
scu instruction, making this step unnecessary.)

The values for the linkage pointer and linkage base
registers are loaded into the lp-lb base register
pair. (Since the Fault Interceptor Module is not
called, it must establish its own linkage values.)
The values to be loaded into lp-lb are determined at
system initialization or reconfiguration time and stored
11 inside11 the FIM procedure. This enables the FIM to
establish its own linkage values using an 11 internal 11

address.

3. A new interrupt frame is allocated in the Process
Concealed Stack (i.e. the Concealed Stack is pushed
down) in preparation for the next fault (or process
interrupt). Since a processor may fault (or accept
a process interrupt) in the course of handling
an earlier fault (or process interrupt), care is taken
to prevent a possible overlapping of the new interrupt
frame and the interim stack in use at the instant of the
fault. A new interrupt frame is allocated as follows.

a. The value of the stack base register, sb, (stored
in Step 1) is examined. If the stack base register,
sb, does not contain the segment number of the
Process Data Segment, then the new interrupt frame
is allocated immediately following the current
interrupt frame. (It is important to emphasize that
sb indicates whether the new interrupt frame should
be allocated relative to the stb pointer or relative
to spf18.) In this case, the base location of the
new interrupt frame is obtained by adding 32 (i.e.
the length of an interrupt frame) to the stb pointer
stored at the base of the Process Concealed Stack.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE 4

4.

If the stack base register contains the segment number
of the Process Data Segment# then the sp-so base
register pair points to the base location of the stack
frame in use at the instant of the fault and sp(18
points to the base location of the next (intended) stack
frame (i.e. next sp). In this case# a constant# k# is
added to the value of next sp to obtain the base
location of the new interrupt frame. (Currently# k is
eq ua 1 to 32 •)

b. A back pointer to the previous interrupt frame is
fabricated and stored into locations 31-32 of the
~ interrupt frame.

c. The stb, sreg, and scu pointers stored at the base of
the Process Concealed Stack are adjusted to point
to the appropriate areas within the new interrupt
frame.

A new interim stack is created immediately following the
just-allocated interrupt frame. The sp-sb address case
register pair is set to point to the base location of the
new interim stack. The value of the ~ sp is determined
and stored at spf18 in the first stack frame of the new
interim stack. The amount of temporary storage required by
the FIM is used in determining the value to be stored
at spf18. This step enables the FIM to use temporary
storage.

s. The safe-stored machine conditions are examined to determine
whether the fault is a system fault or a process fault.
Usually, the fault code captured by the processor is
enough to identify a particular fault; however, in some
cases# other information captured by the processor must
be used. For example, outward wall crossing attempts are
detected by "attempt-to-execute-data" faults. In fact,
no such fault exists on the GE-645. When an outward
wall crossing attempt is made# an "illegal procedure"
fault occurrs. The FIM examines the machine conditions·
to determine whether the illegal procedure fault was
caused by an access violation. If so, the FIM determines
whether the segment being accessed is a data segment. If
so, the FIM determines which (even or odd) instruction
was being executed and examines that instruction to
determine whether it is a transfer-type instruction. For
system faults only, the following steps are taken. (For
process faults# skip to step 14.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE S

6. Control is switched to the hardcore protection ring of
the running process with the following callJ

call ring~load (0)

(See MSPM Section BG.3.05 for a description of
ring$ load.)

7. The safe-stored machine conditions are copied from the
Process Concealed Stack into the paged fault-stack
that belongs to the running process.

a. The values of the stack base register pair, sp-sb,
are obtained. The stack pointer register, sp,
points to the base location of the stack frame in
use and spl18 points to the base location of the
next (intended) stack frame.

b. The interrupt frame containing the processor state
(Step 1) is copied from the Process Concealed Stack
into the paged stack. (Since the Process Concealed
Stack has been "pushed down," a missing-page fault
during the attempt to copy the processor state is
acceptable.) The base location of the interrupt
frame into which the processor state is copied is
obtained by adding 32 to the value of next sp.

c. An interim stack is created immediately following
the interrupt frame. The first stack frame of the
new interim stack is initialized.

d. The stack base register pair, sp-sb, is set to
point to the base location of the newly created
interim stack.

8. The space required for temporarily saving the processor
state is returned to the Process Concealed Stack (i.e.
the Process Concealed Stack is "popped-up" one level.)
The values for the stb, sreg, and scu pointers are
derived from the back pointer stored in locations 31-32
of the current interrupt frame.

9. A standard CALL is issued to the appropriate module to
handle the fault. This module may CALL other modules.
Until a RETURN is made to the Fault Interceptor Module,
all steps for handling the fault are taken by other
procedures. When control returns to the Fault
Interceptor Module, the sequence of steps presented
here continues.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE 6

10. Control is returned to the ring in which the fault occurred
with the following call;

call ring~load (n)

11. The machine conditions are copied from the paged fault-stack
into the current interrupt frame of the Process Concealed
Stack.

12. The safe-stored processor state is checked to insure that
the control unit information is valid.

13. The processor state is restored to return control to the
point at which the fault occurred.

The following steps continue after step 5, if a process
fault is detected.

14. A test is made to determine whether the condition
associated with the process fault may be signalled
in the protection ring in which it occurred or whether
that condition must be signalled in a specific protection
ring. If the condition must be signalled in a ring other
than the one in which it occurred, the FIM must switch to
the appropriate ring. Steps 6-8 {above) are executed
in order to switch control (temporarily) to the hardcore
ring. Then, the Gatekeeper is called to perform the
housekeeping to switch to the protection ring in which the
condition is to be signalled. Finally, control is switched
to the appropriate protection ring by calling ring$1oad.

15. A "placeholder" frame is built in the stack for the
protection ring in which the fault is to be signalled.
(Note that this step is taken by the Gatekeeper in step
14 if the condition is to be signalled in a ring other
than the one in which it occurred.) MSPM Section 80.9.01
contains a detailed description of how ''placeholder" stack
frames are constructed.

16. The machine conditions associated with the fault are
deposited in the "placeholder" frame.

17. The condition associated with this fault is signalled
as follows;

call signal (conditionname, flag, meptr)

Until a return is made to the FIM, all steps taken for
handling the fault are taken by other procedures. When
control returns to the FIM, the sequence of steps presented
here continues.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE 7

18. If necessary, control is switched to the ring in which
the fault occurred. (See step 14.)

19. The machine conditions are copied from the paged stack
into the current interrupt frame of the Process
Concealed Stack.

20. The copy of the machine conditions modified by the
fault handling procedure is checked to insure that
the control unit information is valid.

21. The processor state is restored to return control
to the point at which the fault occurred.

