
-·

~1ULTICS SYSTEfv1-PROGRAi"iHERS' fvtL\NUAL

Ld~nt i fica lion

File System 1 ni tia 1 ization (Part 1)
R. C. Daley

E..u.rpose

SECTION BL.10.01 PAGE 1

Published: 04/24/67

This section provides the specification of the procedures
which perform the first part o-F file system initialization.
These procedures run under the control of the Multics
initialization control program during the first part of
t~ultics initialization. The main purpose of this part
of file system initialization is to initialize all secondary
storage devices used by the file system and to initialize
some of the data bases used by the file system. After
these initialization procedures have been run~ they may
be deleted allovJing the storage to be reused by the second
part of Multics initialization.

Introcluction

When the Multics initialization control program passes
control to the first part of the file system initializer~
the system is in the follo\rJ:i.ng state.

1. Some of the segments of the hardcore supervisor have
been loaded and all of their external segment references
have been pre 1 i nl~eci.

2. The GIOC interface module (GIM) and its data bases has
been initialized and is available for use by the file
system.

3. The system interrupt interceptor and interrupt handlers
for drum and GIOC interrupts have been initialized.

4. Dummy versions of the traffic controller procedures
11 block11 and '11 \i·Jakeup11 have been provided.

f..Ll~ s ys temJ .. o.Lti.aJJ z at i.o..u

At the appropriate point during the first part of system
initialization; the Multics initialization control program
makes the -1-ollovving call to initialize the file system.

call fs_irdt_1;

Upon receiving this call~ the follcA'.Iing steps are taken
to initialize the file system.

MULTI CS S YS TEi'i·-PROGRM,1HERS ' f·1\0>.NU.~ L SECTION BL.10.01 PAGE 2

Step _1

To initialize all secondary storage devices available
to the file system~ control is passed to an initialization
procedure by means of the following call.

· call initialize devices;

If the file system hierarchy has been destroyed or must
be reloaded, th5.s procedure calls the define_device entry
of the device utility package (see BG.17) tore-initialize
each secondary storage device (e.g. prepare free storage
maps, etc.).

Step 2 .

To define the areas of s2condary storage to be used by
the version of Multics currently being initialized a call
is made to the follovJing initialization procedure.

call define_partitions;

This procedure nBkes successive calls to the get_status
entry of the device utility package to obtain the file
pointer and current length of the root directory and the
master hyperrecord addresses (see BG.17) defining the
areas of secondary stot·age to be used by this version
of Multics. This information is placed in the file system
device configuration table (see section BL.10.04) for
use during parts 2 and 3 of file system initialization.

Step 3

The file system device disposition table (DDT) is initialized
by issuing the following call.

ca 11 in i tia lize_ddt;

This procedure initializes the DDT from information in
the file system device configuration table and presets
the multi level cr5.ter5.a parameters (see section BH.1).

S teo l.J.

The file system device interface modules (DIMs) are initialized
by means of the following call.

11 .•.• 1" .c •• ca 1n:n:ta :tze_tS_C\J_ms;

MULTICS SY$TD-1-PR.OGRAf\1fv1ERS' fv'\A~JUAL SECTION BL.10.01

This procedure first initializes the I/0 queues which
are common to all DIMs and then proceeds to initialize
a DIM for each secondary storage device available to the
file system. The initialization of a file system DIM
inc 1 udes the fo 11 ov.,ri ng steps.

PAGE 3

1. The master hyperrecord is read into core to obtain the
device hyperrecord size and the record addresses of the
free storag·e maps. (The address of the master hyperrecord
has previously been stored in the file system device
configuration table during step 2)

2. The deposition and vJithdrawal buffers are initialized
. by reading in the appropriate records of the free storage
maps.

3. The DIM history table is initialized along with other
DIM dependent data bases.

Step 5

The system segment tables (SST) consisting of the active
segment table (AST) and descriptor segment tab1e (DST)
and the process segment table (PST) are initialized by
means of the following call.

call initialize_sst;

This procedure initializes the SST free storage area and
allocates an AST hash table. Each entry in this hash
table is set with the vacant switch ON to indicate an
empty AST. Upon return from this call the SST is initialized
but contains no AST, DST or PST entries.

he file system core map is in:
o 1 1 ov~ i ng ca 1 1 •

fvlULTICS SYSTEM-PROGRArvJMERS' MANUAL SECTION BL.10.01 PAGE 4

The wired-down process waiting table (P\,JT) is initialized
by means of the following call.

call in it ia 1 ize_pwt~vJi red_piJIJt ;_

This procedure initializes the wired-down PII'!T to appear
as empty (i.e. no processes waiting).

~-
~ero ~ength segments are loaded during initialization
for the sole purpose of reserving segment descriptors
for specific uses by the hardcore supervisor. To set
up some of these segment descriptors to point to specific
segments, a call is made to the follovJing initialization
procedur~.

call update_descriptors;

This procedure sets the descriptor words of the zero length
segments 11 hardcore_ds'' and 11 cu rrent_ds11 to point to the
current descriptor segment. The descriptor word for the
current process data segment 11 pds' 1 is set to point to
the segment loaded by the name 11 process __ data". (During
normal tljultics operation, the segment descriptor for "pdsn

·points to an interim process data segment if the process
is being loc.ded and points to the real process data segment
(i.e. "process_data") vJhile the process is in the loaded
state.) ·

~
Control is returned to the Multics initializer. The above
initialization procedures are no longer needed and may
be deletedo

