
MULTI CS SYS TD11-PROGRA~~fv1ERS' r~NUA L SECTION BL.10.02 PAGE 1

Published: 04/24/67

Identification

File System Initialization (Part 2)
R. C. Daley

Pur_Qose

This section provides the specification of the procedures
which perform the second part of file system initialization.
These procedures run under the control of the Multics
initialization control program during the second part
of Multics initialization. The main purpose of this part
of the file system initialization is to initialize that
portion of the file system necessary for dynamic memory
allocation. Once this part of the file system is initialized~
the remaining segments of the hardcore supervisor can
be lq~ded into a 11 Virtual men1ory11 provided by the file
system. ·

Introduction

When the Multics initialization control program passes
control to the second part of the file system initializer~
the system is in the following state.

1 •

2.

All of the wired-down segments of the hardcore supervisor
have been loaded and all external segment references.
have been prelinked. These segments include all of the
segments necessary to process a missing-page fault (e.g.
page control~ core control 1 file system DIMs).

An interim fault interceptor has been prov~~df~~-~
procedure will call the Multics procedure ~ to
handle mlssina-paae faults and will call an interim·
procedure int~r5m::s~gfewU to handle missing-segment
faults. ~ _ a..-4!tf8M.t:t
System ,In it i a 1 i za t ion

At the appropriate point during the second part of initialization 1

the t .. lultics initializer makes the follo~tJing call to initialize
the file system.

call fs_init_2;

Upon receiving this call 1 the follovving steps are taken
to initialize the file system dynamic paging mechanism.

;

MULTICS SYSTU~-PROGRAfvjfviEF/5" i'-'\L\~JUAL SECTION BL.10.02

S teo 1

The necessary AST 1 DST and PST entries are added to the
system segment tables (SST) by means of the follO'.rJ5.ng
call.

call update_sst;

PAGE 2

This procedure creates a DST entry for the hardcore descriptor
segment using the current descriptor segment as described
in the segment loading table (SLT). Each unused entry
in the descriptor segment"s page table is set to point
to this nev,J DST entry. The necessary softvJare s~t.J5.tches
are then set in all of the page table words for the descriptor
segment.

Next~ a PST entt-y is crea·i:ed for the Hultics initializer
(which will eventually become the first Multics process)
and this· nevv PST entry is linked to the newly created
DST entry. The unique identifiers and AST pointers to
the initializer's per-process segments (i.e. the KST 1

hardcore stack 1 process definitions segment and process
data segment) arc initialized to zero since this information
is not yet available. A relative pointer to the newly
created PST entry is then placed in the process data segment
(re-Ferenced as segment 11 pds11).

Finally~ AST entries are created for each segment listed
in the segment loading table (SLT) except fot' the v1ired
down segments of the hardcore supervisor for which the
per-process switches are OFF. Pointers to these AST entries
are then placed back in the SLT with the related SLT entries.
Certain items for these nevvly created AST entries cannot
yet be provided and must be set to zero. The following
is a list of these items.

1. The unique segment identifier (id)

2. Pointer to AST entry for parent directory segment
(astparent)

3. Index of branch in parent directory (xbt·anch)

4. Active meter table index (amtindex)

MULTI CS SYS TE~1-PROGRA1'~MERS. "· tv1J\NU~.L S.ECTTON BL.10.02 . PAGE 3

The active file trailer (AFT) for the new AST entry must
have the device identification set for the first available
device listed in the file system device configuration
table and the file length and file pointer items set to
zero. This action will ultimately cause the segment to
be written on the device specified by the AFT.

The software switches in the page table w6rds must be·
set appropriately. Page table words for pages currently
in use are set to show that the page has been modified.
This action will ultimately cause a copy of the page to
be written in secondary stora~e. Unused page table words
(marked v1ith directed fault 0 1 are set to point to the
related AST entry. The segment status in the segment
loading table entry for the segment is then tested and
one of the following actions is taken.

1. If the segment status is ,,dred (i.e. the segment must
reniai n vJi red dovm) 1 the vvi red-dovm segment count is
set to "1 11 •

2. If the segment status is Jcaded (i.e. the page table
must remain in core) 1 the page-table-hold count is set
toll1".

3. If the segment status is ~LY£ or nnanal, the entry-hold
count is set to 11 111 and a ca 11 is made to the segment
control utility routine maketral.Jer: to create a process
trailer for the AST entry.

s .. 1.en.2

update the core map to indicate that
segments already loaded is assi , a call

e following initializatio rocedure.

ates core map entries for all core u ed
the; ' n zero-length segmen s) 1 is ted i

the segm"' loading tab (SLT). All of he informati n
needed or creating these ~ries is pre ided in the SU~
entr and page tabl·e of each s ent. ntries for hype pages
for segments in ~;vi n~d-dovvn status must be set to indicat
that the hyperpage is wired down.

- .,.. . -

i4U L Tl CS S YS TEt,1- PROGRAt~1f,1ERS " tv\ANUA L SECTION BL.10.02 PAGE 4

Control is returned to the Multics initializer. The remainder
of the hardcore supervisor can nm'\/ be loaded using the

. virtual memory provided by the file system missing-page
fault handler and the interim missing-segment fault handler
described below.

The Interim Fault Interceotor

o a llovJ missing page and segment fau 1 ts to be hand 1 e '
w "lethe remainder of the hardcore supervisor is b .ng
loa d and initialized# an interim fault intercept r is
initi ized by the Multics initialization contro program.
This fa t interceptor responds only to missin page and
segment f lts (i.e. directed fault 0).

Upon receiving directed fault 0# the in· fault interceptor
processes the fau in the same manner the normal fault
intercep.tor (see BK. v.Ji th the follo\:v" g exceptions.

1. Since much of the M

2.

has not yet been loade or
assumed to have occured .
system initialization ri

The interim fault int ceptor ca
fault handler (see lm·v) to
faults.

the interim segment
missing segment

Note: missing-segm t faults are always proce ed by calling
the segmen fault handler after switching o the ring 0
pageable Lack (i.e. 11 hardcore_stack11) unles the fault
occured vhile referencing this stack. If a se~~ent fault
occur as a result of a reference to the normal "ng 0
stac # the call to the segment fault handler must made
us5 g the process concealed stack which is always
wi·red-clovm.

The Interim Seament Fault Handler

The interim segment fault handler is provided to handle
missing-segment faults while the remainder of the hardcore
supervisor (including the regular segment fault handler)
is being loaded and initialized. During part 3 of file
system initialization there is a short period of time
(from step 6 to step 10) in which both the interim and
normal segment fault handlers must be operational. Therefore,

~~ULTI CS S YS TE1·1-PROGR.t,t·WiERS" fvlf\NUA L SECTION BL. 1 0. 02 PAGE 5

the interim segment fault handler must determine which
segment faults it should handle and which should be passed
on to the normal· segment fault handler. Segment faults
for segments having corresponding entries in the segment
loading table (SLT) are processed by the interim segment
fault handler while segment faults for segments not listed
in the SLT must be passed on to the normal segment fault
handler.

When a missing-segment fault is encountered by the interim
fault interceptor, the following call is made to the interim
segment fau 1 t handler. . . r...... A ndJv

~-~- ~.k.-J'~_L.LX...~ ~-
call i..nte.rirtc::se.gfa~(scuptr, ~ .. ringno, en 'e>:r

errcode);

The parameters used in this call are the same as described
for the nor·mal segment fault handler ,;;egfq,ult (see BG.3.1).
Hm'llever, the ,ri ngno p3rameter is guaranteed to be zero
during system initialization and may be ignored by the
interim segment fault handler.

Upon receiving this call, a check is made to determine
if the missing segment has a corresponding SLT entry.
If no SLT entry exists for this segment, the segment fault
is passed to the no~mal segment handler by calling the
segfaLLll primitive of segment control.

If an entry exists in the SLT for the missing segment,
the SLT entry may contain a pointer to a previously created
AST entry for the missing segment. If no AST entry yet
exists for the segment, a nevv AST entry is created as
described in step 1 and a pointer to the ne\rJ AST entry
is placed in the corresponding SLT entry for the missing
segment.

Once the AST entry for the segment is found (or created
if necessary) a call is made to a page control primitive
(getloaded) to provide a page table for the missing segment.
Upon return from page control, the page table address
in the AST entry is combined with other information in
the AST and SLT entries for the segment to make up a segment
descriptor VJord. This segment descriptor "'1ord is placed
in the appropriate location of the descriptor segment
and control is retUI~ned to the fault interceptor.

