
i~ .. ··
·.~.}

l'"'\,
'VJ

TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
T. H. Van Vleck
MSPM BL.4.01
02/29/68

This section ha.s been revised to reflect the actual
implementation.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01 PAGE 1

Published: 02/29/68
(Supersedes: BL.4.01, 03/24/67)

Identification

Bootstrap 1
A. Bensoussan, T. H. Van Vleck

Purpose

Bootstrap 1 receives control from the boatload program,
and must satisfy the interface conditions described in
BC.4.1. It reads the rest of itself and loads from the
MST all the segments needed to create the environment
described in the bootstrap initializer's overview. Then
it transfers control to bootstrap 2 which initializes
the segments loaded.

Discussion

Bootstrap 1 is written in assembly language; the first
part is executed in absolute mode and must be self-relocating,
that is, capable of execution in any absolute core location.
When the appending mode is set, bootstrap 1 must be a
Master Mode procedure because it issues a connect instruction
for reading the MS T.

It cannot accept any fault; therefore all inter-segment
references must be done through base address registers
or ITS pairs pre-set.

No call macro can be issued because the base address registers
are not paired and there is no stack. Bootstrap 1 does
not have any associated linkage section.

Since the hardware configuration is not known, 64K of
core is assumed to be· available iiTJTiediately follO\I'Jing
the base address of the GIOC used in the Boatload.

At the end of Bootstrap 1, control is transferred to the
entry point of Bootstrap 2 which is, by convention,

<Bootstrap 2>10

The different steps executed in Bootstrap 1 are:

Step 1: Set temporary descriptor segment and read the
rest of bootstrap 1 •

Step 2: Create final descriptor segment ~nd switch to
i t •

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01

Step 3: Set the fault-interrupt vector.

Step 4: In it ia 1 i ze S LT.

Step 5: Initialize the physical record buffer.

Step 6: Load the rest of MST collection 1 and create
SLT entries.

Step 7: Transfer to bootstrap 2.

A description of each step is given in this section.

PAGE 2

Tape reading is performed according to the same algorithm
used by the initialization Tape Reader (BL.6.02)~ but
status handling is less sophisticated.

For any terminology concerning the MST. see BL.1.01.

Step 1

Read the rest of Bootstrap 1 :

Th1s step can be thought as the continuation of the diode
program. It is directed by two fundamental ideas:

a- minimize the amount of code in absolute mode

b- make this step as short as possible because all its
code must be contained in the first physical record of
the MST.

In order to satisfy (b) the following assumption is made:

While the rest of bootstrap 2 is read. no repeated physical
records are expected in th¢ MST.

The actions taken in this step are the following:

1. Creat~ a te~porary ~escriptor segment:

The number of physical records to be read in .step 1
is determined and the base address of the descriptor
segment is obtained~ This descriptor segment is
unpaged and describes the following unpaged segments:

a. Itself

b. Interrupt vector used by the bootload

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01 PAGE 3

c. Mailboxes used by the bootload

d. Boots trap 1

2. Initialize base address registers 0-3 in such a way
that they are external registers containing the appropriate
segment numbers.

3. Set the appending mode by executing the two instructions:

4.

LDBR base address of the descriptor segment

TRA b 1 I ~'(+ 1

Control goes to the instruction immediately following
the TRA instrucion in the bootstrap 1 segment.

Set the interrupt vector:

In any GIOC, status channel 0 and 1 are assigned
interrupt cell numbers between 0 and 11. Since
the bootstrap 1 pro~ram does not know the precise
hardware configurat~on, all the pairs 0 to 11 in
the interrupt vector are set in such a way that,
when an interrupt occurs:

a. the control unit information is stored in

<bootstrap 1>lcontrol_unit

b. control g9es to

<bootstrap 1>lexp_interrupt

where the control unit is restored.

Settin~ the interrupt vector in the way described
above 1mp1ies that the interrupt must be requested
through status channel 0 or 1.

5. Read the rest of bootstrap 1:

As many CIOC's as needed are issued. The necessary
information concerning the CONNECT operation is
found from word 0 in the mailboxes, which was
the connect operand word used by the bootload
program (see BC.4.01). Also, a CIW will be found
in loc. 14 of the mailbox, left over from the
hardware bootload.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01 PAGE 4

The interrupt must be requested through status channel
0 or 1.

The physical header and trailer are directed to working
storage while the lo~ical information contained in
the physical record 1s loaded at the appropriate
location in bootstrap 1.

While waiting for the interrupt, the program loops~
testi~g the status.

A 11 the phys ica 1 records read are assumed to be correct;
no check is made on the next physical record. Following
each record, if GIOC status is not identical to that
expected, the program stops.

Step 2

Create the Multics InitialJzer's descriptor segment and
Swap DBR:

The descriptor segment created here will be used during
all the Multics Initialization. The first part of it
will define the Multics template descriptor segment.

Therefore~ hardcore supervisor se~ments will be assigned
segment numbers from 0 to n-1, wh1le initialization segments
wi 11 be assigned segment numbers from n to 2n-1.

The value chosen for n is n = 2048.

The segment number assignment is as follows (see figure 1):

Segment 0 = Descriptor segment

1 = Fault.vector

2 = Mai 1 box for boot load Gl OC

3 =Second GIOC mailbox

4 =Drum mailbox

Segment n+O = SLT

n+1 = name table (associated with the SLT)

n+2 = physical record buffer

n+3 =bootstrap 1.

MULTICS SYSTEM-PROGRAMMERS' fv\L\NUAL SECTION BL.4.01 PAGE 5

All segments, even the descriptor segment, are paged.

For each of these se~ments a page table must be manufactured
and pages allocated 1n such a way that no missing page
fault will occur in the rest of the bootstrap initializcr
(1 and 2).

The actions taken in step 2 are as follows:

1. Determine the processor base address Po:

Po is assumed to be an address zero modulo 1024.

In the code, Po is obtained from Bo by setting the
10 least significant bits to zero.

2. Create a page table and a segment descriptor word
for the following segments:

- Descriptor segment

- F au 1t vee tor

-Mailbox for boatload GIOC

-Mailbox for 2nd GIOC

-Mailbox for drum

- SLT

- Name table

- Physical record buffer

- Bootstrap 1

3. Switch to the new descriptor segment:

a. Copy the segment descriptor word of bootstrap1
from the current descriptor segment to the new one,
at the same position.

b. Load the DBR with the base address of the new
descriptor segment's page table.

c. Initialize base address registers as described
above.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01 PAGE 6

Step 3

Set the fault-interrupt vector:

The fault vector segment contains one 64 word block for
faults (Block 0) followed by eight 64 word blocks for
interrupts (Blocks 1 to 8). Contiguous with these 9 blocks,
it contains 4 additional 64 word blocks (Blocks 9, 10,
11, 12).

Block 9 is reserved for 32 ITS pairs; ITS pair #i (O<i~31)
is used by the TRA instruction located in the pair #i
of the fault vector.

Block 10 is reserved for 32 ITS pairs for the SCU instructions
·in the fault vectors.

Block 11 is reserved for 32 ITS pairs; ITS pair #j (O<j<31)
is used by the TRA instruction located in the pair #j
in any of the blocks 1 to 8, of the interrupt vector.

Block 12 is reserved for 32 ITS pairs for the SCU instructions
in the interrupt vector.

These 13 blocks are initialized by Bootstrap 1 in such
a way that:

a- Following any fault or interrupt the control unit is
stored in <bootstrap 1> J control_unit.

b- Following any fault, control goes to <bootstrap 1> I
unexp_fault which causes the program to stop.

c- Following interrupts 0 to 11 coming from the bootload
GIOC (they are the only expected interrupts), control ~oes
to <bootstrap 1> I exp_interrupt, where the control un1t
is restored.

d- Following any other interrupt, control goes to <bootstrap
1> I unexp_interrupt which causes the program to stop.

Step 4

In it i a 1 i ze the S L T :

The SLT and the name table associated with the SLT are
initialized as described in BL.2.01.

One entry is created in the SLT for each existing segment.
These are canned entries assembled into the program.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01 PAGE 7

Step 5

Initialize the physical reGord buffer:

This step has to be done so that the input routine described
at the end of this section can work properly.

The structure of this physical record buffer is as follows:

word 0:

words 1 to 8:

words 9 to 265:

words 266 to 272:

bits 0-17 contain
that have already
physical record.
such that:

the count of words
been moved from the
The count is an integer

0 ~ count < 256

contain the physical header

contain the logical information

contain the physical trailer

words 1 to 272 constitute the "current buffer".

Contiguous with the 11 current buffer••, 272 words are reserved
for the 11 next buffer'•. The next buffer is used in the
input routine to check the validity of the current buffer.

Step 5 consists of the fo 11 owing actions:

1. Copy in the current buffer the last physical record
read in step 1.

2. Store in word zero the count of words which are part
of bootstrap 1 in the current buffer.

Step 6

Load the rest of MST collection 1.

A tape input routine is used that is responsible for reading
physical records from the MST and moving a requested number
of words from the physic~l record buffer (described in
step 2) to the requested area.

This input routine is not called with a call macro but
with a TSXi instruction and returns to the caller using
index register i. It needs two arguments:

MULTI.CS SYSTEM-PROGRAMMERS' rv'ANUAL SECTION BL.4.01 PAGE 8

a. the length_ in words_ of the logical MST to be moved.

b. the initial location where the requested words have
to be moved. This initial location isigiven by an ITS
pair.

The following segments and their associated linkage sections
are required in collection 1 (see also BL.1 .01):

- Bootstrap2

- S LT manager

- Hardcore stack (" stack_dummy")

The algorithm used in step 6 for loading the segments
mentioned above is the following:

1- Call the input routine to move the "control word" to
a local buffer of the bootstrap 1.

-If the control word is a ''mark control word"- call the
input routine to read the "mark" and go to step 7
(below).

- If the control word is a "segment control word"_ go
to ERROR.

2- Call the input routine to move the "Header" to a local
buffer of the bootstrap 1. (The length of the header was
contained in th~ "control word").

- Create entry in the SLT

- Create entry in the descriptor segment

- Create page table according to the max irrum length ·

-Allocate pages for current length

3- Call the input routine to move the ''control word" to
a local buffer of the bootstrap 1.

- If it is not a 11 segment control· word" go to ERROR.

4- Call the input routine to move the "segment" in pages
allocated in 2. (The length of the.segment was
contained in the segment control word).

5- Go to 1.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01 PAGE 9

Step 7

We have now loaded all of collection 1, and are ready
to call bootstrap2. First, we must perform the following
11 cleanup11 actions:

a) read the collection mark from the MST. Its
value is ignored.

b) load index registers with numbers interesting
to Bootstrap2.

Set X1 = segment II of slt_manager

X2 = II " of SLT

X3 = processor tag

c) pair the bases. Bootstrap2 executes in slave mode,
so that base SB in particular must be loaded with
the segment number of the stack and locked by
bootstrap1.

Then we transfer through an ITS pair to location 0 of
bootstrap 2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.4.01 PAGE 10

r~ r~

Po 0 mod 1024
Fault Vector 64

Interrupt ' Vector 512

Hardware Boot load J
Bo

,.

r'v

rJ ("'1

Go 0 mod 1024
~~

Boot load
GIOC

1024 Mailbox

,.
Lo

1
-4 EI'.try Point

Bootstrapl

Figure 1: Environment of Bootstrap 1

	Scan 18.PDF
	bl-4-01.680229.bootstrap-1.pdf

