
MULTICS SYSTE.M-PF.OGRAMMERS' MANUAL SECTION BM .. 9 PAGE 1

Published: 07/03/68

Ide:ntif'l.cation -'111---..-11 ,,,._

shutdown and wi n:d_shutdown
M. Turnquist

fur::~

Whe·n sy::';tem c.percttion is discontinued, core must be cleaned.
The shutdown primitive wi 11 force a 11 segments in core
(excepting only the wired_down hardcore segments) onto
either the drum <lr disks.

(When bringing the system up again, system initialization
re 'loads hardcore segments whether they are a 1 ready there
or not. If they are already present they are written
over. Hence we need not concern ourselves with clearing
them during shutdown.)

Wi t .. ed_shutdovm i:; a uti 1 i ty routine for shutdown which
does thi.~ last bit of cleaning up.

Us<(~

As ring 0 primitives, available to the initializer process
1 . t ' on1y, sta us act~veG

ca '11 hcs_$shutd0\tm

ca '7. 1 wi ted_shutdown

Implementation o·!: shutdown:

1.. De::itroy all processes other than the initializer, the
idle proces ·;, the loader daemon and the hardcore processes 0

Th.is inc lud:.!S a 11 user processes excepting the in i tia 1i ze r,.
all system :>rocesses and all daemons excepting only the
loader daem:m.

Se·t tc_data:;system_shutdown to 1 in order that no mon:~
apt (active process table) emtries can be added.

Pick up the apt (active process table) pointer from
tc._data.. C";rcle through the apt, testing the class
of each ent~-yo If the class of the entry is system,
user .. o:"' da,!mon and if the process_id does not equa 1
that of one of the above exceptions, then destroy the
process by :::1eans of destroy_proc.

call d!.~stroy_proc (process_id)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BM.9 PAGE 2

2. Destroy the loader daemon. (The primitive destroy_proc
uses the loader daemon·process in order to operate. Hence
the loader daemon cannot be destroyed earlier.)

Unload the process.

call unload._proc (pstep);

where pstep is a pointer to the PST (process segment
table) entry.

Delete any branches inferior to the process directory of
the loader daemon.

call del_dir_tree (1dpath, errflg).:

where ldpath is the full path name of the process
directory of the loader daemon and errflg is an
error indicator.

Delete the process directory of the loader daemon.

call delentry (path, name, 0, code);

where path .is process_di r _di r,
name is the entry name of the process directory of
the loader daemon, the courtesy switch is off, and
code is an error return.

The loader daemon process is still in the apt (active process
table). However shutdown is the only process now in
operation, and it will not reference the apt againo Hence
the apt need not be cleaned up further.

3. Delete the ast (active segment table) entries for all
non hardcore segntents. Cycle through the ast hash table.
Test each entry to see if deletin9 conditions hold.
(i.e., if the entry hold count, w1red down segment count,
and page table hold count are off - and in addition, the
inferior count=O - then delete. These conditions are
necessary fm· de 'lastentry to work.)

If the entry is not to be deleted at this time continued
cycling through the ast hash table. To delete, first
lock the ast ent1·y. Then pick up the relative pointer
to the entry's p.::lrent (i.e., the directory to which the
entry belong':;) and delete the given entry.

...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BMo9

call getastentry$delastentry (astep, code);

code is an errcode.

PAGE 3

(Note: delastentry expects the entry to be given to
it lock,ed.)

Look at the parent of the deleted entry to see if
deleting conditions hold. If so, delete, using the
method described abovea If not, go back to cycling
through the hash table.

4. Grow thr.:~ cu 1'"rent length of the stack big enough so that
shutdow11 can complete it's operation without adding
pages t<) the stack. (Shutdown operates on the ring 0
stack, 1.111hicb is paged.)

5. Insure a 11 pages of active segments are assigned
address,,zs in secondary storage.

Be:fore any more ast entries are actua 11 y destroyed,
some housek1.~eping must be done if nothing is to be
lost by shutting the system down.

Look at the file map for each active segment to see
whether the drum address for any of its pages is null.
If so, assiqn a drum address to that page.

ca 11 pc$ass ign_addresses (a step);

wh~~re astep is the ast pointer for each active
seqmen~.

call the drum dim to stop any further address
assignmento

ca 11 d·.~vice.,...cont ro 1 $sh\Jtdown;

6. Update the i.lct ive information in the branch for each
ast entry. To do this the parent directory for each
entry must be known to our process. Cycle through the
as;t. f.:)r any given entry a sdw (segment descriptor word)
must be put into the descriptor segment of our process.

In the desc;~iptor segment of every process there
exists a dwnmy word. This word may be changed at wi 11,
thus adding a sdw for whatever segment we choose.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BM.9 PAGE 4

Call master_mode_ut$swap_sdw (dp, bitsdw, savsdw);

where dp is a pointer to the place in the descriptor
segment to be changed.,

bitsdw is the sdw for the entry to be known

savsdw is the word being replaced by bitsdw

The parent directory of the given entry is now known to
our process~ hence the active information in the branch
itself can be updated.

call activinfo$wrbranch (dp, slot, id, actsw, itemsptr,
dfmp, code);

where
dp is the pointer through the sdw of the parent
directory of the given entry .•

slot is the slot number of the given entry in its
parent directory (picked up from the ast entry).

id is the unique identifier of the branch (picked
up from the ast entry).

actsw is the active switch which we set off.

itemsptr is a pointer to a structure made up of the
active information (picked up from the ast entry).

dfmp is a pointer to a copy of the entry's file
mapo

. code is. an error code, returned.

7.· Finish the c1eaning up process with a call to wired_shutdown ..

ca 11 wi red_s.hutdown

Implementation of wi re::d_shutdown

1 •.

2.

3.

Finish cleaning up the ast. Call pc$clean_up for each
remaining entry that is not wired down. (Thus we avoid
cleaning up our cwn process.)

Put free_storage on the drum by calling free_store$shutdown.

call master mode ut$bos in order to get back to the BOS
subsystem. - -

..

