MULTICS SYSTEM-PF.OGRAMMERS® MANUAL SECTION BM.9 PAGE 1
Published: 07/03/68
ldentification

shutdown and wired_shutdown
M, Turnquist

Purpose

When system operation is discontinued, core must be cleaned,
The shutdown primitive will force all segments in core
(excepting only %he wired_down hardcore segments) onto
either %he drum or disks,

(When bringing the system up again, system initialization
retoads hardcore segments whether they are already there
or not, If they are already present they are written
over, Hence we need not concern ourselves with clearing
them during shutcdown,)

Wired_shutdown i:s a utility routine for shutdown which
does the last bi? of cleaning up,

As ring O primitives, available to the initializer process
only, status active,

ca’l hecs_$shutdown
ca’ll wired_shutdown
Implementation of shutdown:

1. Destroy all processes other than the initializer, the
idle process, the loader daemon and the hardcore proce:zses,
This includis all user processes excepting the initializer,
all system nrocesses and all daemons excepting only the
loader daemon,

Set tc_datajsystem_shutdown to 1 in order that no more
apt (active process table) entries can be added.

Pick up the apt (active process table) pointer from
tc_data, Cvcle through the apt, testing the class

of each entrry, If the class of the entry is system,
user, or da:2mon and if the process_id does not equal
that of one of the above exceptions, then destroy the
process by ineans of destroy_proc,

call destroy_proc (process_id)

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BM.,9 PAGE 2

2,

Destroy the loader daemon, (The primitive destroy_proc
uses the loader daemon process in order to operate, Hence
the loader daemon cannot be destroyed earlier,)

Unload the process,
call unload_proc (pstep);

where pstep is a pointer to the PST (process segment
table) entrv,

Delete any branches inferior to the process directory of
the loader daemon,

call del_dir_tree (1dpath, errflg);

where ldpath is the full path name of the process
directory of the loader daemon and errflg is an
error indicator,

Delete the process directory of the loader daemon,
~ call delentry (path, name, 0, code);

where path is process_dir_dir,

name is the entry name of the process directory of
the loader daemon, the courtesy switch is off, and
ccde is an @rror return,

The loader daemon process is still in the apt (active process
table), Howaver shutdown is the only process now in
operation, and i% will not reference the apt again, Hence
the apt need not be cleaned up further,

Delete the ast (active segment table) entries for all

non hardcore segients, Cycle through the ast hash table,
Test each entry %o see if deleting conditions hold,
(i,e,, if the entry hold count, wired down segment count,
and page table hold count are off - and in addition, the
infericr count=0 - then delete, These conditions are
necessary for delastentry to work,)

If the entry is not to be deleted at this time continued
cycling through he ast hash table, To delete, first
lock the ast entry, Then pick up the relative pointer
to the entry’s parent (i,e,, the directory to which the
entry belongs) and delete the given entry.

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BM.9 PAGE 3

call getastentry$delastentry (astep, code);
code is an errcode,

(Note: delastentry expects the entry to be given to
it locked,)

Look at the parent of the deleted entry to see if
deleting conditions hold., If so, delete, using the
method described above, If not, go back to cycling
through the hash table,

Grow th2 current length of the stack big enough so that
shutdown can complete it“s operation without adding
pages to the stack, (Shutdown operates on the ring O
stack, which is paged.)

Insure all pages of active segments are assigned
address2s in secondary storage,

Before any more ast entries are actually destroyed,
some housekzeping must be done if nothing is to be
lost by shuitting the system down,

Lcok at the file map for each active segment to see
whether the drum address for any of its pages is null,
If so, assign a drum address to that page.

call pu:$assign_addresses (astep);

whare astep is the ast pointer for each active
segmen:,

call the drum dim to stop any further address
assignnent,

call davice_control$shutdown;

Update the active information in the branch for each

ast entry, To do this the parent directory for each
entry must he known to our process, Cycle through the
ast, For any given entry a sdw (segment descriptor word)
must be put into the descriptor segment of our process,

In the descriptor segment of every process there
exists a dummy word, This word may be changed at will,
thus adding a sdw for whatever segment we choose,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BM,S PAGE 4

7.

Call master_mode_ut$swap_sdw (dp, bitsdw, savsdw);

where dp is a pointer to the place in the descriptor
segment to be changed,

bitsdw is the sdw for the entry to be known

savsdw is the word being replaced by bitsdw
The parent directory of the given entry is now known to
our process, hence the active information in the branch
itself can be updated,

call activinfo$wrbranch (dp, slot, id, actsw, itemsptr,

dfmp, code);
dp is the pointer through the sdw of the parent
directory of the given entry,

slot ig the slot number of the given entry in its
parent directory (picked up from the ast entry),

id is the unique identifier of the branch (picked
up from the ast entry),

actsw is the active switch which we set off,

itemspir is a pointer to a structure made up of the
active information (picked up from the ast entry),

dfmp is a pointer to a copy of the entry®s file
mag ,

. code is an error code, returned,
Finish the cleaning up process with a call to wired_shutdown,

call wired_shutdown

Implementation of wired_shutdown

Finish cleaning up the ast, Call pc$clean_up for each
remaining entry that is not wired down., (Thus we avoid
cleaning up «ur cwn process.)

Put free_storage on the drum by calling free_store$shutdown,

call master_mode_ut$bos in order to get back to the BOS
subsystem,

N

