
-'

MULTICS SYSTEM-PROGRAMMERS' MANUAl_ SECTION BN. 10.01 PAGE 1

Published: 12/07/67

Identification

An example of EPL string manipulation
D. B. Wagner

Epigraph

There is a lot to do in Liddypool, but not all conveni-ence.

- John Lennon.

Purpose

This section is a companion piece to Section BN.10.00.
We take a simple sample pro~ram and investigate some of
the ways in which the effic1ency of the compiled code
is affected by source-level decisions. We then present
a. rather terse annotation which should help a system programmer
to read the object code given in BN.10.01A for the various
versions of the program. ·

The investigation of the source program assumes a thorough
· knowledge of the language and some feeling for EPL data

formats.· The objectcode annotations assume a thorough
knowledge of EPL data formats, 645 machine language, and
EPLBSA conventions. Every system programmer ought to
know these things. and those who do not may find this
a usefu 1 firehose-sty 1 e learning aid.

This Section is long on discussion and short on conclusions.
This is due in· part to the author's tragic flaw and in
part to the difficulty of finding any universally valid
principles in the irrational world of EPL. Our basic
purpose here must be to provide the beginning of the kind
of unde~standin~ whi~h can b~ used as a basis for action
in part1cular s1tuations.

The Program

The program we are interested in is a trivial ver-sion.
of R. R. Fenichel's wordfliToer. When called. it reads
a line. reverses each word ~n the line. prints the result.
and returns. . Thus if it read ''Wher~ did you ·get those
great big beaut i fu 1 eyes'' it would print 11 erehW did uoy
teg esoht taerg gib lufituaeb sey~•.

"· I,

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BN.10.01 PAGE 2

The version we. start with is on page 1 of BN .1 0. 01A.,
Look at this program. The call to read_in reads a line
from the console typewriter into the varying string ~
and sets 1 to the number of characters read. The use ·
of index and the if"'s·following it put into word the next
word (sequence of characters delimited by blc:~mks) in the.
1i ne o The .Q.Q loop with concatenations reverses the word
and the statement 11 revword = ••• '' puts the reversed word
into the proper place in the result. The call to write_out
prints the result .on the console. ·

With th·is introduction it should not be hard to follow
the various versions and the history of versions presented
below.-

Efficiency Measurements

Just to what the reader"'s appetite, the size and timing
of the various versions are given in the table below.

, .
2!'.

3.

4.

5.

size of text
. and link in·
words

Varying-strings and
concatenation ·

Non-varyin~ strings
and substr s

Using mismatched
declarations ln place
of the substr"'s

Making the mi~matched
array "synchronous"

Mal<ing the misf1lCltched
array have one-word
elements.

603

356

253

243

465

time in ms.

481

224

85

76

75

second
call

46

105

27

19

17

The timing tests were made using the 645 simulator in 6.36.

There are good reasons for ignoring:th~ measurement of
the speed of the first call. In the f1rst place this
includes all the link-popping and.(perhaps) some dynami~
loading, c:md these are the specif1c system funct.ions wh1ch

wi 11 be done very differently in Multics. Second, the

1'

,.. MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BN.10.01

first call happens only once, so that for example the
first-c~lT speed increase by almost a factor of 3 from
version 2 to version 3 is really just a saving of 139
ms. A reasonable price policy might make this a saving

PAGE 3

of one c~nt per process using the program. Using the .
program 1n a thousand different processes would just beg1n
to pay for one compilation of the improved version. The
spectacular increase in after-first-call speed is what
we should be concentrating on.

The Versions

Initial experimenting with modifications of this program .
was rather discouraging. We changed al.l the varying strings
to static; changed line and word to non-varying; used
a mismatched declaration instead of the substr in the
inner loop; and we were most annoyed to find that the
program size changed by perhaps 10 percent and the time
changed by about 1 percent. Apparent 1y the varying-string
concatenation in the inner loop· just swamps all other
timing effects. Investigation of the run-time library
shows that each concatenation with a varying·result involves:

. .

one call from the program to stgop_1ctcs~

one call from ctcs_ to alloc_

two calls from ctcs · to movstr
" ·. ·- . -

· one call from ctcs_ to freen_

So the only hope was to chan.ge the algorithm to avoid
varying strings and concatenations. The resulting program
is on pa~e 17 of BN.10.01A. · The inner loop is tricky: ·
examine 1t warily. ·

As the timin~s given above indicate, this attempt at improving
the program 1s a thorough bust. The reason· is that we ·
still have a vast number of calls to run-time routines
in the main loop. (See BN.1Do01A pages 21-25, lines 184-324).

But note that all the substr's are on non-varying strings
and have a constant 11 length11 argument. Those in the know,
know that EPL does a much better job on subscripting than

· it does on substringing. So if we treat the character-string
1 i ne as an array Qf Single Characters I the COde ShOUld .
imprqve.

MULTICS SYSTEM-PROGRArv'MERS' MANUAL SECTION BN.10.01 PAGE 4

We will treat line as an array by using a mismatched decl~ration.
Mismatched declarations are, as a matter of policy and
common sense, frowned upon. They create the possibility

· of incredible bugs, they cause us to lose some measure
of machine-independence, and they are hard to find later
unless the programmer has taken special care to make them
obvious. Nevertheless, since s·orne of the most effective
strategie$ for improving program efficiency demand mismatched
declarations, we must grumble and go ahead~ Note in what ·
follows that whenever a mismatched declaration is used
it is very carefully annotated for the benefit of pqsterity.

See the program on· page 29 of BN.10.01.A. The pro~ram
corresponds statement for statement with the prev1ous
one, so it should not be hard to. follow. Note that the
array declaration takes the form of an array inside a
structure. This is because, if we had simply declared,

del dummy_line (100) char (1) based (lp);

EPL would have considered th_is array aligned, i.e. with
each character at .a word boundary.· BN.9.01A gives the
r~les which determine whether ~n EPL aggregate is aligned
or packed. It suffices here to say that the declaration,

del 1 dummy based (lp),

2 1 i ne (1 00) char (1) ;

yields a packed array.

A glance at the timing table given earlier shows that
we have done rather well this· time: a fourfold speed
increase and about 30 percent space improvement. But
it sti 11 is rather. galling to think that it doesn't require
a .very ;;mart compiler to reco~nize this special.case.and
give it to us free, without m1~matched declarat1ons, extra
debugging time, and a messy program.

But this pro~ ram can _be milked ·even further: notice in
the EPLBSA hstings for this program the frequent comment
"NOT SYNCHRONOUS". They indicate that our array was planned
in,ffSciently. The contept of synchrony of aggregates
is defined i~ BN.S.01 and is rather complicated. In this
case it turned out that the first structure declared below
·is not synchronous, while the second is:

de 1 1 c.turrrny based { 1 p) ;'

2 line (100) char (1);

MULTICS SYSTEM-PROGRAMMER'S ML\NUAL SECTION BN.10.01 PAGE 5

del 1 durrmy based (lp),

2 line (0:99) char (1);

The program on page 38 of BN.10.01A ma~es suitable adj~stments
and uses the second declaration above 1nstead of the f1rst.
we again find an.improvement, although of course we couldn't
really expect· it to be as dramatic as the first: rough 1 y
30 percent timing improvement.

Just to show the lengths to Which one· c;::an go, we have .
done great violence to our program and produced the vers1on
on page 47 of 8N.10.01A. Here the array declaration is,

del 1 dummy (25),

2 (cO,c1,c2,c3) thar (1);.

So the array has one-word eleme~ts, and whenever an access
is made to a character in the array its position with
respect to word boundaries is known so shifts do not have
to be calculated at execution time.

The speedup in the actual access must be at least tenfold,
but most of this improvement is masked by the large amount
of expensive ari~hmetic we have placed in the inner loop.
Thus the speedup is on 1 y about 10 percent. Ther~ is, .
of course, the possibility tha. t a cleverer algo·rith.m might
obviate the need for this arithmetic. But th¢ whole point
of using a higher language is to avo~d the necessity of
worrying about word boundaries and such.

Annotations of the EPLBSA obJect.programs

Below is .a set of notes which should help in reading the
EPLBSA code in BN. 10.01A.

The EPL~SA listings given for these programs are those
produced on-line on the 645 by the EPLBSA assembler.
These listings are printed by the GECOS program SYSOUT
and so use th~ GE Hollerith character set instead of Ascii;
therefore all letters are printed as upper-case and certain
unavailable special characters are printed as random other
characters. ·What GE character replaces a given.Ascii
character depends upon which of the. two printers happens
to be configured into the system, The two important trans
formations are:

Ascii character

underscore

vertical bar

One printer

ru
1\

Oth.er pr i.nter

\
1\

MULTICS SYSTEM-PROGRAMMERS" Ml\NUAL SECTIQN. BN.10.01

Look quick]y at pne~of tbe EPLBSA listings and notice
the follow1ng ways 1n wh1ch EPL helps someone reading
the code: ·

PAGE 6

1. The code produced for a given source statement is marked
off by blank conrnent lines, that is lines which consist of
nothing but a double-quot~ character. . ·

. 2. · Scattered throughout wi 11 be found c·urious little comments
in the."cornments field" of various li"nes. These comnients
are explained in the notes below.

In addition.., note the ~~"line numbers" in the EPLBSA ·listing.
(Third column of numbers.) These line numbers will be
used throughout this Section in referring to the EPLBSA
code.

Page 2.., lines 2-4.

These comments give the version for each of the three
passes of the compiler.

Page 2.., 1 i.nes .S-T. ·

These statements appear at the beginning of every opject
program. The segref for datmk_ may or may not be necessary..,
but is always there, The symbol .ds .marks the beginning ·
of the "display" in each stack frame:. the display is ·
used by internal blocks to keep track of ·the stack levels .
of all containing blocks. The symbol .lo marks the beginning
of a 4-word 11 uti 1 i ty" block of ~torage n the stack ·frame.
The important thing about ,uo is that this storage is .
available at each block level pOSsible in the program.

Page 2.., lines 8-17.

This kind of·code is compiled for each external entry.
The link on 1 ine 8 is comp~ led in case the program· later
refers to itself. bJse is tf'le. pseudo-op "which specifies
a location counter to be used (see BN.8.01). Not~ the
names of the two most important location counters, prolc1
for the prologue code sequence and rnainc1 for the main
code sequence.

Lines 14-15 are the call to .sv.., the standard save sequence.
The symbol ·..Ai.l is the size of the stack frame needed
by this program.., and is defined at the end, on page 11,
line 446. ·

. .

MULTIC.S SYSTEM-PROGRAMMERS' MANUAL SECTI6N BN.10.01 PAGE 7

Pages 2-3, lines "19-54

This code is included in ~ny program which mentions varying
strings. · It is usually merely usele.ss, but can occasionally
be dangerous. Thl• code tries to set up and initialize
the free storage area at free_$free_. But we normally
don't need this initialization since the library free
segment is present. Furthermore this code may never oe
invoked, as in this case It is not~

This code. is that which would be compiled for a declaration
like

del x area((1024)) external ~tatic;

Lines 29-37 are the code to grow .1024 words at the first
reference to the segref· free_. Lines 38-43 are the dope
vector for the area. Lines 45-53 are the code in the
"internal static specifiers" code sequence to set up the
specifier for the area.

The references to location 39 of the stack frame on lines
36, 46 and 51 have to do with making sure we .don't attempt
to initialize untll the specifier exists •. I have never
been able to understand this code, but it doesn't work
anyway· so· don't worry about it •. I.t wi 11 be changed· to
something else eventually.

Page 3, lines 54-69.

This is the code compiled for the declaration of the varying
character string ~.

The egu on line 55 gives tne loc~tion in the stack set
as-ide for the ·string's eight words of specifier Q.nd data.
The comment on this .1 ine indicates the source program ·
name. xx00~6 is the alifS used by EPL in referring to
this varlab e. ·

·Lines 58-65 are in the prologue code sequence; they manufacture
a specifier for the varying string and then call the subroutine

v1 to initialize the· string. Lines 66-69 are in the
~pllogue code sequence: they free the storage occupied
by the value of the varying string.

Page 4, lines 127-131.

These ~'s specify the locations in the stack frame which
wi 11 hold the fixed variables i, ·l, }$, and 1. Again note
the aliases and the col'l111ents g·iving source program names.

MUL TICS SYSTEM- PROGRAMMERS"" MANUAL SECTION BN. 10 .·01 PAGE 8

Page 4, lines 133-149.

This is the code compiled for the call to read_in. Note
that the statements ·

1 ink xx003~, <read_! n>.l [read_ in]

•••

call 1plxx0038,*(•••)

have precisely ·the same effect as,

call <read_in>l[read_in] (•••)

The former code is more difficult to reac;i in the listing,
however, and is therefore preferred by EPL~ · · ·

Line 134 Is the code for the constant 100, and lines 136-140
copy this constant into. a temporary for the call. PL/I ·
does specify this copying of all constants passed as arguments.,
but it seems to be rather a waste.

The symbol ~ is the location in the stack frame of a
block of storage big enough to hold the largest argument
list use9 in the program. The code in lines 141-148 set
up the argument list for the call. The fld instruction
on line 147 is very clever: it sets up the s-ands
registers for a standard argument list header, and does.
it in one instruction without needing any literals. Check
the 645 manual for how it works.

Page 5, · 1i ne s 1 51-1 56

This is the character-string constant" ". Note that
it has·a specifier which can live in a pure procedure.
There seems to be no reason for the even pseudo-op on
line 152.

Page 5, lines 157-165

This is the ca 11 to stgop_$cscs_ which performs the assignment

result = " '-' ;

See BN.7.09 for stgop_$cscs_.

I

MULTICS SYSTEM-PROGRAMME'RS"' MANUAL

Page 5, lines 167-171,

This is the assignment

1• - 1 •
. - .fl

SECTION BN.10.01

as can be seen by looking back in the program to find
out what xx00.34 is. the alia$ of.

Page 5, line 173.

This line is for the statement label word loop~ xx0043 -is the alias for word_ loop.

Page 5, lines. 174-199.

This code evaluates the subexpressio.n

substr (line, i, 1~i+1)

PAGE 9

using the run-time routine stgop_$sscs~. · This routine
just goes directly to the routine $ubstr_$sscs_. The
latter is described in BN.7.05, and the reader is referred
to ·that Section for what is going on here.

Page 6, line 219-223.

This is the substatement

if j=O then

Note that this code is ~bout the best thatcot1ld b~ expec;ted
from anything but a sypercompi ler •. ·It seems to be generally
true that EPL's arithmetic is excellent and everything
el.se is mediocre~to-disastrous. .

The if-action and the else-action are lines 225-255 and
259-290 respectively.

Pages 8-9, lines 301-322.

This. is the code for the .QQ. statement. Lines 360-361
are for the corresponding end statement.

Lines 304-309 evaluate the subexpression

1 eng 'I; h (word)

MULTICS SYSTEM-PROGRAMMERS' fl-'ANUAL SECTION BN.10.01. . PAGE 10

Note that the four instruct.ions on lines 304-307 could be
replaced by ·

ldq spJxx0028+6

Page 10, lines 363-399.

This code is for the statement

resu 1 t == res.u 1 t r f11 II I r r~vword;

Lines 367-378 set up a varying string temporary· with alias
xx0051. Then the code for the statement is the same as
that for

t .= reSUlt r f" II J

revword = tl I revword;

where 1 is the ·temporary •.

Page 11, line 421.

Thi~ 1!:S. is the codefor the return statement.

Page 11, lines 423-1:1-42.

This kind of code appea_rs at th~ end of any block Which
has an epilogue. See BP.3.00 for an ·overview of what
is happening.

Lines 433-442 are the prologue code to ·establish the epilogue
for the bene.fi t of the unwinder. The symbol end. 1 is

. where control goes at a normal· return, and epi .1 is the
point at which the unwinder can call the epilogue •.

The code on lines 427-430 is essentially the standard
be~inning for an EPL internal procedure. The job off.2
(l1nes 495-502, q.v.) is to get the linkage base pair ·
l~lp set properly and to put a pointer to the stack
frame of the main procedure into ,ds, the "display''. in
the epilogue's own stack frame. · ·

The code on lines 423-424 reverts the epilogue so that
the unwinder no longer knows about it, and sets ,ds to
point directly to the current stack frame.

t

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.01

Looking qu.ickly back to line 67 t note how the epllogue
does its job. By always referr1ng to things through Ad?
it does not need to know whether it is operating in a

· stack frame of its owh or in the same stack f rarrie of the
main.procedure.

Page 11, lines 444-448.

~ like this appear at the end of every block. They
establish several numbers important to the block. The
symbo 1 s are:

.a1 argument list storage

.u1 utility storage

.as1 size of stack frame

.wJ unclear. They have something to

.m1 do with adjustable data, of which there

is none in this program.

Pages 11-12, lin~s 449-459.

PAGE 11

This code ls to set up the internal static storage block.
It only got into this program by accident (because of
the free_$free_ nonsen~e of lines 19-54) and will not
be discussed here. See the notes in BN.10.02 for a full
discussion of this code.

P~ge 18, lines 19-26. ·

This is the code for the declaration of the non-varying.
string line. The prologue code sets uP an ordinary 4-word
specifier. No epilogue is needed.

Page 19, lines p8-69.

This is the code for the statement

do j = i by 1 to 1;

The corresponding end statement compiles into the tra on
1 i ne 146.

· MUL TICS SYSTEM-PROGRAMMERS~· MANUAL SECTION aN. 10~01 PAGE 12

This code may be thought .of as soinethtng like the following:

del xx0040 fixed;

xx0040 = i;

del xx0041 fixed;

xx0041 = 1;

j = xx0040;

go to xx0042;

xx0038: j = j+1;

xx0042: if j > xx0041 then go to ~x0039;

•.• 0

go to xx0038j

xx0039:

This code is four or five instructions more expensive
than it needs to be- but it really isn't bad compared
to the rest of EPL. (And it is nearly an order of magnitude
better than EPL produced for this statement in the bad
old. days).

Page 20- line 100

This egu is the result of Pass 1.5"s pooling of te.rriporarie$.
The comiTJent 11 equ temp'' te 11 s the story •

Page 21- line 139.

Comments 1 ike ''A reference to a temporary" are added to
mu~h of the code produced by the part of the compiler
written by J.F. Gimpel. The main thrust of Gimpel's work
on EPL was optimizing short string references- so that
these comments generally point out pieces of very good
compiled code. This p~rticular instruction is picking
up the value of the bit-string temporary xx0047 without
going through the specifier. In the bad old days this
reference would have taken perhaps four or five instructions.

,

,

MULTICS SYSTEM~PROGRAMMERS' ~NUAL SECTION BN.10.01 PAGE 13

Page 21 .• 1 ines 150-187.

This is the code for the second do statement in the program.
The amazing array of floating-pofnt operations such as
fad. 19e. etc •• etc.; indicates to the weary ·reader·that
sot:neth~ng happened which he didq't bargain for.

The problem is that EPL's language specifications demand·
that the result bf a division be·a double-precision floating ...
point number. So the ·compiled code dutifully converts
everything iri sight to floating-point. Every time around
the loop. !s. iS converted to double-floating a·nd compared
with the doubl e-f 1 eating result of the expression (j -i) /2.

1 t would have been slightly more efficient to write the
statement.

do r = 0 by 1 to fixed ((}·d)/2.17);

but not by very much. Hard to get worked up about.

Page 25. line 351 ~

This is what appears at ·the end of a block that doesn'"t
need an epilogue.

Page 30 11 line 34.

Here. is the code for the statement

cicl c char (1);

. Compare with the code for the same statement. page 18.
lines 34-40. Pass 1.5 has determined that in the present
case no specifier is needed, because .£ is never passed
as an argument. ·

Page 32. lines g8-99.

This is the constan·t 11 " again. but in this versio.n of·
the program Pass 1.5 has determined that the constant
does not need a specifier. since it is never passed out

·as an argument. Compare page 6. lines 201-205.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

P~ge 32, lines 98-115

This is the code for the substatement,

1 f 1 p->dumrny. 1 in~ (j) = " " then

SECTION BN.10.01 PAGE ·14

The hassle this code goes through is b~tter than once-upon-a-time,
but still rather peculiar.· What .mx,O and .mx1 do is not

. terribly clear, but the ·result is that index tegister
6 contains a word offset and index register 5 contains
a shift.

The ca 11 to ,.mx 1 is mad~ necessary by the fact that .the
array is "not synchronqi.Js". See BN. 9. 01 for a rather •
opaque .definition of this term.

Once the character has been accessed out of the array,
the compatison (lines 112-115) goes along rather well,
although it ce.rtainly could be pared by at least 2 instructions.

Pa9e 41, lines 97-116.

This is the substatement,

if lp-:XIummy. 1 ine{j-1) = " " then

where the declaration of dummy has been changed so that
it is 11 synchronous". Comp~re ·with page 32, 1 1 nes 98..; 1. 15.
Now we see that the call to~ has disappeared, so that
the statement executes much faster. ·

Page 51, lines 46-60.

This is the code for the declaration,

del blc(0:3) label inft (blc_O,blc_1,blc_2,blc_3);

As can be seen, this does n.ot look mu~h 1 ike a label array.
The actual "data" of the·array is the set of four tra's, lines
46-49. So the data is not ordinary label data. Furthermore
it cannot be as~igned to, s'nce it lives in the procedure
segment. The wonderful thing about this label array,
however, is that using it is incredibly fast and efficient.

,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION I3N. 10.01 PAGE 15

Lines 56-60 are dope and specifier for the label array.
They are never referred to 1 but are there only becau~e
a bug in Pass 1.5 at thi~ writing forces them to be made.

Pages 53-54, lines 197-198.

·This is th~ code for,

go to b 1 c (j c) J

· Remarkably good code.

Page 54, lines 205-213.

This is the code for the substatement,

if lp-~ummy (jw).cO =" 11 then

The circumstances are ideal for a short-string reference
now: the array has one-word elements, and the.position
within the array of the substring is known. The code
turns out to be not bad: only three instructions less,
but now the ca 11 to .mx~ is not necessary so each instruct ion
carries only its own we ght. .

Pages 55-56.

Note the vast array of floating-point operations~ a consequence
of usin~ divisions. With this much code in the inner
loop do1ng arithmetic we had no reason to expect this
program to be faster than its predecessor, but in fact
tests shON that this program li faster. The general rule
seems to be: SQY amount of arithmetic is worthwhile if
it in some way allows better string manipulation.

Page 57-59.

The high dens 1 ty of "A refe renee to •••• " comments is
a sign that we must be doing something right, since as
we mentioned before this comment usually indicates the
neighborhood of a better-than-average plece of compiled
code. ·

