MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTICN BN,.10.02 PAGE 1

Published: 12/07/67

Identification

m———

An example of the use of EPL adjustab]e-]ength and varying-
1ength strings.,
D. B. Wagner

Egigragh

One pill makes you 1ar?er
One pill makes you sma

And the ones that Mother gives you
Don‘t do anything at all ...

- The Jefferson Airplane

Purgose

This Section continues in the spirit. of BN.10, 01 We

take a simple program, go through different ways of organizing
it, and show how.these source-level decisions affect object
code efficiency, Then we give a set of notes which should
allow a highly motivated system programmer to read the

object code for the various versions, = (Source and object
listings are given in BN.10,02A.) _

The Program

Our sample program maintains a symbo] -table, The calls
are: '

call table (name, value);
call table$1ookup(name value,no);

Here name is a character-string, value is the fixed-point
value associated with this name, and n no is a label, Jable
enters pame and value into the tab]e T Table$lookup looks
up name ~and returns va]ue or goes to po if pame is not

in the table,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN,10.02 PAGE 2

The numbers

The various ver51ons of the program will be found in BN 10,02A.
The following table gives the sizes and timings of these
versions, ,

size of 4 - time in ms,
‘text A

h Y sy

and first average first average

link, call to after «call to after
words, table first lookup first

1. A single threaded
list of adJustable , : ‘
structures L63 194 .4 1.2 8.8 2.1

2. Same with
non-adjustable
structures 305 1.1 0.7 6.5 1.0

3, Hashcoded with a
list for each
bucket, adjustable) ‘ ’ -
structures 599 195.2 1.3 5.6 0.9.

L, Some with
non-adjustable , o
structure 453 | 1,9 | 0.8 5.3 .0.5

5. Two parallel arrays, . ﬂ |
- varying string 387 59,3 | 0.5 5.1 1.2

6. Same with
non-varying .
strings 265 35,3 o.4. 5.2 12

The Versions

Our first version just keeps a threaded 1ist of table
entries, and the static pointer list points to the head

of this list, Each element of the list contains a pointer
to the next, except the last which contains a null pointer.

ﬂ

MULTICS SYSTEM-PROGRAMMERS® MANUAL ~ SECTION BN.10.02 PAGE 3

Note the two structure declarations: entry is the self-
referencing declaration for the table entry. A self-referencing
structure cannot, of course, be allocated, so we have .

in addition the structure declaration gl-entry whichis
adjustable but not self=-referencing. ' '

In the second version we make two simplifying assumptions:
first, that no name is longer than 32 characters; second,
that time is more important than space, So we remove

all our machinery and make the structure non-adjustable,
The results might be called dramatic: we almost double

the speed of entering into the table, and better than
double the speed of a lookup, Ah, the price of generality.

The next two versions add a simple hashcoding scheme to
the first two. Now instead of a single list we have 21
lists, and a name goes into one of these lists depending
on its hashcode, Note that in both cases we get a factor

of two improvement in the speed of table$lookup and only

a small degradation in the speed of table.

The hashcode is very simple: the binary value of the

first character of the name, taken mod 21, Anything fancier
would be too hard to write in EPL, The internal procedure
hasher evaluates this hashcode using a mismatched declaration,
We never even tried not using the mismatch, because we

were sure the non-mismatched way would be so slow it would
drown all the gains of hashcoding, o '

The fifth version makes the simplifying assumptions that
there will be no more than 100 entries in the table, and
that -space is unimportant, We have two parallel arrays,
one containing the names of varying strings and the other
containing the corresponding values, Note that the time
for enterin% into the table has improved quite a bit,
while the time for looking something up is disappointing.

. The final version wastes a terrible amount of space and
%ives a rather disappointing account of itself, The time
or entering in the table has improved a little more, '

but lookup time is still mediocre.

MULTICS SYSTEM-PROGRAMMERS © MANUAL - SECTION BN.10.02 PAGE L

Notes on the ob]eet‘code ‘ ,
We take up here where we left off in BN.10.01. Below

~are notes which will help in the task of readxng the object

1lst1ngs in BN.10.02A
Page 3, lines 21-18.
This is the code for the declaration,

. del list ptr staticVinit'(nu11);'

Lines 21-22 are the null pointer. They occur in every
program which uses the built-in function n u]] The null
po1nter always has the alias xxOOOO ,

sspc is the name of one of the location counters used

or the code sequence which handles the static initial
attribute, Lines 24-26 initialize the variable list. :
We will discuss later how this code sequence gets invoked.

Pages 3-4, lines 32-92.

‘This is the code compi]ed for the declaration of the basedv

adjustable structure entry, It is not really necessary

to understand this code completely, but it is worthwhile

to note the sheer mass of it. This code, and more in
subroutines, is executed on every reference to entry.

A better dlscussion of this code than is .given here will

be found in BN,.6,02 and BN,7.01. Lines 33-51 are a subroutine,
which calculates the expression,

ep sentry,In

In general one subroutine like this would appear for each
adjustable element of the structure.

Lines 61-69 are the dope vector template., This is the
proper dope vector for the structure with all known extents
filled in. Note that on line 69 the dope for the string

-entrx.]ine has the proper id code but no length filled

Lines 71=77 . are proIogue code, They oopy the dope template
1nto the stack and make up ha]f a specifler

MULTics SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BN.10.02 PAGE 5

Lines 79-92 are an internal procedure which creates dope

for the structure whenever ‘it is needed., Lines 296-298

- show a typical call to it. 1t fills in the minlmum information
necessary in the dope vector, then goes to ,dpQ which"

calls tdope_ to complete the dope vector,

Pages 5-6, lines 1u44-153,
This is the code for the statement'
In = length (name);

There is a bit of Fat here: in particu1ar the ca11 to .
20f0 is qu1te unnecessary. ‘

Page 6, lines 155~ 190 |
This is the utterly unnecessary code to initialize the
free_ segment., 1t is discussed in BN.10.01, This time
it appears because of the allocate statement.
Page 7, lines 215-218, 220-224, and4226—228.
These are, respectively, the three statements initializing
the first three elements of the structure entr Note
that the code is really quite good, because o J. F. Gimpel“s
~work, This good code is possible for everything wh1ch
comes before any adjustable item in a structure.

Page 7, lines 230-255. |
This is the code for the assignment,

ep >al_entry,name = name;
The code is the same aévit wqquybe'for,

call stgop'3cscs (name, epaa1 entry name)«

Lines 233-236 put the first argument pointer into the
argument list,

Lines 237-252 put in the second argument po1nter. This
code breaks down into severa] parts:

237-241 Set base pair bbe-bp to point to the structure
and abe-ap to point to the structure’s dope.

MULTICS SYSTEM-PROGRAMMERS MANUAL SECTION BN.70,02 PAGE 6

242-24l4 Set bbe-bp to point to the string within the
- structure and abe-ap to point to the string dope
within ‘the structure dope.

249-251 Create specifier and dope for the string in stack
' ' locations 70-75. : ‘ .

252 Store a pointer to this specifier into the
» argument 1list, - = = - .

Page 9, lines_33u-3ud.
This is the statement,
go to no; | - _
Since no is not local, this isiCOmpiled essentially as,
' Cal1 unwinder (no); |
So that any necessary epilogues can be performed,
Page 10, lines 359-373. o |
This code sets up for the growing dhd initialization of
the block of storage used for interhal static storage,
See BN,7,08 for an overview of what is happening.
Lines 362-363 are the beginning of the internal procedure ,
which initializes the internal static storage., This internal
- procedure has been built up in two location counters,

specc and isspc, because of problem related to getting
specifiers set up before they are reeded. o

Look back to lines 276-277 to see How internal static storage
is accessed, The instruction, o R

eapbp 1pl.1s,*
causes the storage to be set up iflit hasn't‘a1ready;

In any case, by the time the instruttion is finished,
bb<bp is set to point to the fully initialized block

of static storage. '
Page 18, lines 102-115, v
This is the call to stgop_$cscs_ to perform the assignment,

ep~>entry.name = name;

ﬂ

MULTICS SYSTEM-PROGRAMMERS® MANUAL | SECTION BNQTO{OZ PAGE 7

Compare with page 7, lines 250-255, This. time ep- entry.name
is not adjustable Consequently in.the preparation of =
the second argument for the call, we find:

106-108 Make bb<~bp point to the string

109-111 Create specifier and dope for the string
: - in stack locations 46-51,

112 j Store a pointer to this specifier into
argument 1ist

Page 28, lines 66-71,
This is the code for,

list (j) = null; |
It is, of course, rather unfortunate that this code multiplies
- by 2 by multiplying by 72 and dividing by 36. Code equivalent
to lines 67-69 wou d , ,

eaxs thing, *7

thing: arg . 0,7 -

In additien, just to be cute, one might replace lines 68-71
with, o : e E T N

eax6 . :thinQZ,*7 B

staq 1pl.is,%6
thing 2: arg = xx0028,7

- Page 36, lines L58- u70 B
This code picks up the argument misdeclared

del name char(1);

"MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BN,10.02 PAGE

Note the comment "idiotic", It means we are referencing

a short string parameter, In general this comment comes
out whenever a short string may or may not cross a word
boundary: in this case lines L6L-L4E6 are unnecessary,

but EPL is not set up to take advantage of the fact that

by convention single characters never cross word boundaries,

Page 38, lines 5uk-555.

The subroutlne ,0f0 computes a word offset and a shift

from string dope, Once upon a time this subroutine included
a test for whether the string was packed or aligned,

At some point in the past year someone took the test out
of this compiled code, and left us open to an interesting
bug. EPL does - occasional]y pass aligned strings: for-
example the call on page 33, lines 306-328, passes an
aligned string. We have not been able to find an example

of such a case in which the "offset" in the dope is non-zero
- (which is the only case which causes trouble), so it is
possible that this is not & bug so far as EPL is concerned,
But this Is an incompatibility between EPL and any other
PL/I-1ike compiler for Multics, since the PL/I standards
permit both packed and allgned strings with arbltrary
offsets, The compi?er must be changed ,

Page 59, lines 56-7“
This is the code for the static array of varying strings
. list_name, Line 57-63 are. the dope, and lines 65-7.,
in the internal static initialization code sequence, sets
up. the specifier and initializes using varst_$zero.
Page 59, line 77. | o
This is all that is- needed For the array oF Fixed-point
: numbers list_value., No dope or specifier is needed SO

.. pass 1.5 has e1iminated these. ;
.Page 60, lines 95~ 128, | |
This is the code for the call to do the a551gnment

fblist name(l1st _top) = name;
The code breaks down as follows:~,. A _
98-100 copy llst top into an autematic temporary,}:'

101-104 Make bb<-bp point to the array data and abe-ap
p01nt to the array dope

8

>

N

MULTICS SYSTEMQPROGRAMMERS; MANUAL SECTION‘BN,io,oz PAGE
105-107 Make bbehbp point to the particular element
- of the array,
109-110 Save bb<—bp and ab<-ap for later,
1M4-117 Put in argument pointer For name (the easy. one).
1i8-119 Restore saved bb<~bp and abeaap.

120-124 Create .varying- strlng dope and spec1fier for
the array element in stack 1ocat\ons Luy-51,

125 Store a p01nter to this spec1f1er into argument
list.

126-128 Make the call.

Page 69, line 21, o R
Note that now list_ name does not need dope and specifier any more.
Page 69 70, lines 41-66, ,
This is the call to do the assignment,

| 1ist-name~(listjtop$ srname})
Compare with page 60 11nes 95 - 128‘ Now list _hame is an
-array of ordinary non-varying strings. The code breaks

down into:

Lh-L6 Copy 1ist; _top into an automatic temporary.

50-53 Make argument pointer for name (the easy one)
'54-56' _Make specxfier and dope for the array e1emen+ |

" in stack locations 40-45,

63 ~ Store a pointer to this soec1fier into the
argument list,

64-66 -Make‘the call.

