
.-

.r

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

Identification

SECTION BN.10.02 PAGE

Published: 12/07/67

An example of the use of EPL adjustable-length and varying­
length strings.
D. B. Wagner

Epigraph

One pi 11 makes you larger,
One pill makes you small,
And the ones that Mother gives you
Don~t do anything at all ~ ••

- The Jefferson Airplane

Purpose

This Section continues in the spirit of BN. 10.01. We
take a simple program, go through different ways of organizing
it, and show how these source-level decisions affect object
code efficiency. Then we give a set of notes which should
allow a highly motivated system programmer to read the
object code for the various versions. · (Source and object
listings are given in BN.10.02A.)

The Program

Our sample program maintains a symbol-table. The calls
are:

call table (name,value);
call table$lookup(name,value,no);

Here name is a character-string, yalue is the fixed-point
value associated with this name, •ria· rio is a label. T~ble
enters name. and value into the table.-.T~ble$1ookup looks
~p name and returns value or goes to D2 1f ~ is not
1n the table.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.02 PAGE 2

The numbers

The various versions of the .prolram wi 11 be found in BN.1D.02A.
The following table gives the s zes and timings ·of these
versions.

size of time in ms.
text A

" i""f i r~ t and average first average
link, call after to call to after
words. table first lookup first

1 • A single threaded
list of adju~table
structures 463 194.4 1 .2 8.8 2. 1

2. Same with
non-adjustable
structures 305 141. 1 0.7 6.5 1.0

3. Hashcoded ~ith a
list for each
bucket, adjustable
structures 599 195.2 L3 5 .• 6 o·. 9.

4. Some with
non-adjustable
structure 453 141.9 0.8 5.3 .0.5

5. Two para lle 1 arrays,
varying string .387 59.3 0.5 5. 1 1.2

6. Same with
non-varying
st.rings 265 35.3 0.4. 5.2 1.2

The Versions

Our first version just· keeps a threaded list of table
entries, and the static pointer list points to the head
of this list. Each element of t~ist contains a pointer
to the next, except the last which contains a null pointer.

~

'""

,•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.02 PAGE 3

Note the two structure declarations: entry is the self­
referencing declaration for the table ~ntry. A self-referencing
structure cannot, of course, be allocated, so we have
in addition the structure declaration al-entry which· is
adjustable but not self~referencing. · ·

In the second version we make two simplifying assumptions:
first, that no name is longer than 32 characters; second,
that time is more important than space. So we remove
all our machinery and make the structure non-adjustable.
The results might be called dramatic: we almost double
the speed of entering intd the table, and better than
double the speed of a lookup. Ah, the price of generality.

The next two versions add a simple hashcoding scheme to
the first two. Now instead of ~ single list we have 21
lists, and a name goes into one of these lists depending
on its hashcode. Note that in both cases we get a factor
of two improvement in the speed of 1able$1ookup and only
a small degradation in the speed of table ·

The hashcode is very simple: the binary value of the
first character of the name, taken mod 21. Anything fancier
would be too hard to write in EPL. The internal procedure
basher evaluates this hashcode using a mismatched declaration.
We never even tried not using the mismatch, because we
were sure the non-mismatched wa.y would be so slow it would
drown all the gains of hashcoding.

The fifth version makes the simplifying assumptions that
there will be no more than 100 entries in the· table, and
that space is unimportant. We have two parallel arrays,
one containing the names of varying strings and the other
containing the corresponding values. Note that the time
for entering into the table has improved quite a bit, .
while the time for looking something up is disappointing.

The final version wastes a terrible amount of space and
gives a rather disappointing account of itself. The time
for entering in the table has improved a little more,
but lookup time is still mediocre.

MULTICS SYSTEM-PROGRAMMERS~ ~NUAL SECTION BN. 1 0. 02 PAGE 4

Note§ on t~e object code

We take up here where we left off in BN. 10.01. Below
·are notes which ~111 help in the task of reading the object

listings in BN.10.02A

Page 3, lines 21-18.

This is the code for the declaration,

del list ptr static init (null);

Lines 21-22 are the null pointer. They occur in every
program which uses the bu~ lt -in function nu 11. The nu 1-1
pointer always has the alias xxoooo. .

~ is the ·name of one of the locat io"n counters used ·
f"''Fthe code sequence which handles the static initial
attrib~te. Lines 24-26 iMltia1ize the variable list. .
We wi 11. discuss·· later how this code sequence getSTnvoked.

P(lges 3-4, ·lines 32 .. ~2.

This is the code campi led for the declaration of the pased ~
adjustable structure entrx. It is not really necessary · .,
to understand this code completely, ·but it is worthwhile
to note the sheer mass of it. This code, and more in
subroutines, is executed on ·every reference to entry. .
A better discussion of this code than 1s ·given here will .
be found .in BN~6.02.and BN.7.01. Lines.33..;51 are a subroutine
which ca leu lates the express·ion,

ep -.entry. ln

In general one subroutine like this would appear for each
adjustable element of the structUre.

Lines 61-69 are the dope vector template.
proper dope vector for the structure with
f.i lled in. Note that on line 69 the dope
entry_, 1 ine has the proper id code but. n.o
ln.

This is the
all knoWn extents
for "the string ·
length filled·.

Lines 71:77-are· prologue code. They copy the dope template
into the stack and mak·e up half a .SPecifier.

.•

MULTlCS SYSTEM-PROGRAMMERS" MANUAL SECTION BN. 10.02 PAGE 5

Lines 79 .. 92 are an internal procedure which creates dope
for the structure whenever it is needed..· Lines 296-298
sho.-J a typical call to it~ It fills in the minimum information
necessary in the dope vector, then goes to~ which·
calls tdope_ to complete the dope vector. . ·

Pages 5-6, lines 144-153~ ·

This is the code for the statement·

ln ::;: length (name) J

There is a bit of fat here: in particular the call to .
...Qf.Q is quite unnecessary. ··

Page 6, lines 155-190.

This ·is the utterly un~ecessary code to initialize the
free_ segment. It is discussed in BN. 10.01 •. This time
it appears because of the al1gcate statement.

Page 7, lines 215-218, 220-224, and 226-228.

These are,. respectively, the three statements initializing
the first three elements of the structure entfy~ Note
that the code is really quite good, because o J. f. Gimpel's
work. ·This good code is possible for everything which
comes before any adJL!stable item in a structure.

Page 7 . I 1 ines 230-255.

This is the code for the assignment,

ep -:>a 1 _entry.name ::;: name;

The code is the sa~ as it would be ·for,

call stgop __ ~c.scs_(name, ep...al_entry.name); . . .

Lines 233-236 put the first argument pointer into the
argument list.

Lines 237-252 put in the second argument pointer. Ttiis
code breaks down into severa 1 parts: . . ·

237 ... 241 Set base pair bt;,.....,bp to po_int to the structure
and ab~·ap to po~nt to the structure's dope.

I .
i

; .

I
t

i
;

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN. 1 0;,02 PAGE 6

242-244 Set bb...:-J:)p to point, to. the string within the
struct.ure and ab.-a~ to point to the string dope
w i thin ° the s true t u re dope ..

249-251· Create specifier and dope for the string in stack
locations. 70-75.

252 Store·a poi~ter to thii specifier i~to the
argument list·.

Page 9, lines 334-340.

This is the statement,

go to no.r

Since !lQ is ·not local,· this is·. compiled essentiany as,

ca 11 unwi nder (no),;

So that ~ny necessary epilogues can be performed.

Page 10, lin~s 359-373.

This·code sets up for the growi.ng ~hd ihitialization of
th~ block of storage used for interhcO static. storage.
See BN. 7.08 for an overview of what is .happen1ng.

Lines 362-363 are the J:>eginning of the internal procedure
which initializes the internal statlt storage. This internal
procedure has been bui.l t up in tWc>' location counters,
~ and isspc, because of proble~· re.lated to getting
j~i~lf1ers s~t up before they are n~eded. ·

..
Look back to lines 276-277 to see Hbw internal static storage
is accessed. The instruction,

eapbp lpl.is,*

causes.the storage to b~ set up if tt hasn't alreadY~
In any case, by the tim~ the inst~Jttion is finished,
bb~bp is set to point to the fully initialized block
~f static storage.

Page .18, 1 ines 102-115 .•

This is ·the call to s:t;gqp~$cscs_ t~· perform the assignment,

ep..,entry.name ;:: name;

;.

,II

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BN. 10.02 PAGE 7

Compar~ with page 7, lines 250-255. This. time ep- entry.name
is not adjustable. Consequently in the preparation of
the second argument for the call, we find:

106-108 Make bb<-bp point to the string

109-111 Create specifier and dope for the string
ln ~tack location~ 46~51.

112 Store a point~r to this specifier into
argument 1 is t.

Page 28, lines 66-710

This is the code for,

1 is t (j) = nu 11 J ·

It is, of course, rather unfottunate that this code multiplies
. by 2 by multiplying by 72 ~nd dividing by 36. Code equivalent

to lines 67-69 would be:

eax6 thing, *7

0 ••.

thing: arg 0 7 ,
In addition, just to.be cute, one mi~ht replac:e lines 68.-71
with, ·

eax6 thing2,~7

staq 1pl.is,*6

~ . .
thing 2: arg xx0028, 7

Page 36, lines 458-470,

This code picks up the argument misdeclared,

del name char(1);

. .

·· MUL TICS SYSTEM- PROGRAMME-RS"' MANUAL · SECTION BN. 10.02 PAGE 8

Note the- comment "idiotic''. It me~-ns we are referencing
a short string parameter. In general this comment comes
out whenever a short string mayor may not cross a. word
boundary: in this case 1 ines 464-466 ~re unnecessary,
but EPL is.not set up to take adva~tage of the fact that
by ·convention single characters n~ver cross w6rd boundari~s.

P~g~ 38, lines 544-555.

The subroutine 9 of0 computes a w.ord offs_et anc:l a shift
from string d_ope. · Once .upon a ~ime this· subroutine included
a test 'for wnether the string. w.as.· packeq or aligned~
At some point in the past ye~r ?omeorie took the test out .

. of this compiled code, and left us open to an Interesting
. bug. EPL does occasionally pass aligned strings: far·

example'· the call on p~g~ 33, lin~s 306-328; passes an
aligned string. We have not been at)le to find an example
of su~h a case in which·the "offset"· in the dope is non-zero
(which ·is the only .case which causes trouble) ... so it is ·
possible· that this .is not a bug·so far as EPL is concerned.
But this is an incompat~.bi·lity betwe~n EPL and any other
PL/I~ like compiler for. Mu 1 tics,. sin·c·e the PL/ I standards
permit both packed and aligned strings with arbitrary .
offsets. The compiler must be changed.

Page 59,_ lines 56-74. ·

. This is the c9de for the statlc .array of v~ryi[lg· strings
. 1 ist_name. L.1ne 57-93 are. the dope, and hnes 65·74, .
i~ the internal static initi~liz~tlon code sequence, sets.
up the specifier c.tnd · inlti.alizes· usin·g varst_$zero.

Page 59, line 77.

Thi.s is a.ll that is ·need~d f6r the •rray of fixed~point
numb.e.rs list value. No dope or spe~ifier is· needeq, so
pass 1.5 has~el iminated the~e· •

. Page 60, lines 95 .. 128 •.
. .

This is the code for t;h~ call tq do the assignment,

list_:.name(l ist...,;top) = narue; ..

The code bre~ks down as follqws:

98-1'00 . copy nst top into .3,n automatic .temporary.

101-104 . Make bb~bp point to the array data and ab~~p
point to the arnw dope.

.!

MULTICS SYSTEM_;PROGRAMMERS' fv¥\NUAL. SECT I ON HN • 1 0 o 02 PAGE 9

105-107 Make bb~bp point to the particular element
of the artay. · · ·

109-110 Sav~ bp~bp and ab~p for later.

114-117 Put in· argument pointer for name (the easy .one).
. . . .

118-119 Restore saved bb~bp and ab~ap.

120-124 Create .varying-string dope and speci-fier for
the array element in stack locat1ons 44-51. ·

,.25 Store a pointer to this specifier into. argument
list. · · · ·

126-128 Make the call.

Page 69, line Z1. ·

Note that now li~t;_name does not need dope and specifier any more.

Page 69-70, lines 41-66.

This is the call to do the. assignment,
. .

1 ist..;.name (11st~t6p) = nameJ

Compare with page 60, lines 95-~128. Now list_name is an ·
·array of ordinaty non-varying strlngs. · The code bre~ks ·
down into: · · ·

44-46

50-53

54-56

63

64-66

Copy ·list,;_ top i n_to· an: automatic temporary.

r.:\:lke argu~n~ pointer for name (the easy orie).

. Make spec'i fier·· and dope for the array element
ln stack 1oc~t1onS 40-45. ·

. .
Store a Pointer to this specifier into th.e
argument 1 ist. ·

Mak~ the ca 11.

