
r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.82 PAGE 1

PUBLISHED: 1/26/67

Identification

Description of macro calls.

Jean C. Scholtz

Introduction

Pass one of the EPL compiler produces a series of macro calls.
These calls consist of operators, scales (an extravagant gener­
alization of PL/I idea of scale) and various fields. The first
field is the name of the variable or constant specified by the
user in the EPL program. The second field is the created name
for this variable or constant. The remaining fields give in­
formation about this variable or constant. A macro call has
the following form:

operator/scale field 1, ,field 10

The number of fields appearing in the call depends upon the
operator; however, the usual number of fields is ten. A
more detailed discussion of this will appear in the explana­
tion of the fields. A typical line of macro code would be:

dffx ,xx0058,17,0,xxx,int,auto,O,l,O

In this example "df" is the operator, "fx" is the scale and
there are ten fields present, the first field being null.

Classification of Macro Calls

The macro calls are divided into classes according to their
operators. The four classes and a brief deicription of each
follow.

*

A. Binary Operators - These consist of arithmetics
operators, relational operators, boolean operators,
and maximum, minimum and mod operators. Simple IF*
instructions are included in this category. These
are such relations as IF Y < X, IF Y = X, etc.

Capital letters will be used to indicate EPL commands. An
underlined word will signify macro code in cases where it
might not be obvious from the context.

r-

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.02 PAGE 2

B. Unary Storage Operators - This includes load and
store instructions, CALL instructions, .GO TO
instructions, ON conditions, VALIDATE instructions,
difficult IF constructions and the LENGTH function.

C. Unary Accumulator Operators - This includes such
operators as the unary plus, the not operator,
the change sign instruction and all conversions.

D. Operators Needing External Names - In this cate­
gory are the operators used for defining all
constants, labels and variables. The entry macro
which will be discussed later also comes under
this category.

Operators

Most of the abbreviations for the operators are fairly mnemonic.
Following is a table of the operators (by classification) along
with their meanings.

A. Binary Operators

ad add

sb subtract

ml multiply

dv divide
nd and
or or

eq equal
ne not equal
ct catenation
gt greater than

lt less than
ge greater than or equal to
le less than or equal to
ifge if greater than or equal to
ifle if less than or equal to
ifeq if equal to
ifne if not equal to

,..
I

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BN.2.02 PAGE 3

B.

iflt

ifgt

md

mx

mn

Unary Storage

la

sa

ld

st

lg

on.

sg

rv

validate

if

go
gogo

call

ls

gf

if less than

if greater than

mod function

maximum

minimum

Operators

load address accumulator

store address accumulator

load

store

length

on conditions

signal

revert
validate option

difficult if statement (not just simple
relational tests)

go to
go to (used for a transfer to a label
variable whose value is in the current
block)
call

load the size (in words)

generate the effective address

C. Unary Accumulator Operators

ch

nt

ab

sn

af

change sign

not

absolute value

sign function

uriary plus

D. · Opera tors Needing External Names

df

de

entry

define variables

define constants

entry

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.02 PAGE 4

Scales

The scale abbreviations are also mnemonic. A full list of the
possible scales follows.

pt

bs

cs

fl

fx

lb

SX

cd

fi
a a

XX

db

Discussion of Fields

pointer

bit string

character string

floating

fixed

label

structure

condition name

file

temporary location for the address
accumulator

undefined

dimension bounds

The macro code usually consists of zero to ten fields. More
than ten fields may occur in the case of subscripting. Table 1
is a diagram of the fields in the order in which they would
appear in pass one output.

The first field appears only when the operator is df or de.
When any other operator appears the first field is:ffiissing.
The original value is the name of this variable in the EPL
program. When the variable or constant is generated by the
compiler the first field is null.

The created name will be of the form xxNNNN where N is some
digit. This will be the name the compiler has chosen for this
variable. All further references to this variable will be by
the created name.

The actual length in bits appears if the length is declared to
be constant. * would appear if the length were so declared.
Otherwise the length field contains the name of a subroutine
which will compute the length in bits or characters.

The offset field is so known for historical reasons. This
field is usually zero. If the variable is an adjustable
length string then the adjustable flag is set and this field
contains adj. If the variable is external static with the
initial attribute then this field contains esi.

r

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BN.2.02 PAGE 5

original value
o·f constant/

original name
of variable

{.storage}
class

{.created}
name

TABLE l

MACRO FIELDS

{ length }
in bits I

offset:!
0 or adj
or esi

{
XXX f

or var r (scope}

{. # of }
dimensions {-block}

level
' #of }

{substructures

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.02 PAGE 6

The fifth field contains var when the variable being con­
sidered in a varying string. At all other times it contains
XXX.

The scope field has five possibilities: int, ext, con, mos
or par. int indicates that the scope of this variable is
internal. Similarly, ext denotes the fact that it is external.
If con appears the variable is a constant. Seeing mos in this
field, one knows that the variable is a member of a-structure.
If par appears the variable is a parameter. When par appears
an integer will also appear. This indicates which parameter is
being considered. For example the EPL statements:

test:proc (a,b,c);
del (a,b,c) fixed binary;

would produce th~ following macro code:

dffl test,xx0024,27,0,xxx,ext,entr,O,O,O
begin
entry test,xx0024,27,0,xxx,ext,entr,O,O,O

dffx a,xx0026,17,0,xxx,parl,xxxx,O,l,O
dffx b,xx0027,17,0,xxx,par2,xxxx,o~l~O
dffx c, xx0028, 17, 0, xxx, par3,.xxxx, 0, 1, 0

The storage class is one of the following: auto (automatic),
cant (based), stat (static), entry (entry) or xxxx (none).
Though entry is not an EPL storage class it appears here.
Should entry data be introduced into EPL, this would cause
trouble. ·

The remaining three fields are fairly self-explanatory. The
eighth field indicates the number of dimensions. The next field
specifies the block level where the variable ~e are presently
looking at was declared. Level 0 names are built in or external
entries to the program being compiled. Constants appear at
level 1. The last field indicates how many substructures this
structure has. ·

Consider the following examples:

.(1) dfpt p,xx0026,72,0,xxx,int,auto,O,l,O

p is defined to be a pointer. The compiler will use
xx0026 to refer top. p is 72 bits in length, the
scope is internal, p uses automatic storage and is
declared at the first block level.

,...
i

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.02 PAGE 7

(2) gfsx xx0025,0,0,xxx,int,cont,O,l,3

This macro is to generate the effective address of a
structure which has the created name xx0025. This is
a based structure declared at block level one and
having three substructures.

When the operator appearing in the macro is a binary operator,
the number of fields will increase from the usual ten to twelve.
The first two fields contain the length and offset of the
variable in the accumulator. The remaining ten fields are the
usual fields that appear.

Special Macros

Certain code output by pass one deserves more attention since
it differs slightly from the usual forms of code.

The macro use appears with one of the following replacing the
usual fields: autoinit, statinit, statinitint, statinitext,
contbds or main. These instructions indicate to pass two of
the compiler to use routines for setting initial values into
automatic storage and static storage, and for ca·lculating
adjustable bounds of lengths. There is a distinction between
static storage that is internal in scope and that which is
external. When the static storage is internal int will not
always appear following statinit. It is, however, essential
that ext follow statinit when the variable is external in
scope-.--A second field will then appear - the created name
of the variable. The instruction use main indicates to pass
two to return to the main sequence--or code. T::,.e macro thatlls
all is used l.ii-corijuriction-- with the use mas:ro- and it merely ends
~bounds calculating routine. Examples:

(1) use statinitext, xx0027

(2) use main

The bend macro indicates the end of a procedure block or a
begin block. It has no fields. Likewise, begin usually has
no fields and indicates the start of a procedure or begin
block. Begin for an on-unit has one field, "onn. An entry
to any procedure is denoted by the entry macro. This code
will be compiled from the procedure statement at the beginning
of the·EPL program or from a DECLARE statement within the
program. In particular PROCEDURE maps into begin then entry.

The macro if has as its argument a label. This contains the
location which is transferred to if the bit string contained
in the accumul&tor is not zero.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.02 PAGE 8

The macros enable and disable appear when condition prefixes
are used in the EPL procedure. The procedure

a:proc;
(nozerodivide):b:begin;

const:6/0;
end b;

end a;

would produce (among much other code) the following macros:

disable zerodivide

begin

bend
enable. zerodivide

bend

The Address Accumulator

Generally speaking, pass one of the EPL compiler generates one
address code, which assumes an "accumulator" capable of holding
a datum of any scale. In accessing elements of aggregates a
second "address accumulator" is involved. The address accumu­
lator is set by ·gf (generate effective address) or la (load
address accumulator). To perform this assignment:

DCL la,2b,3c;a.b.c = y;

this series of (schematic) macros would appear:

ldfl
gfsx

gfsx

stfl

y' 0 • 0 0 0 0

a , , in t , auto , 0 , 1, 1

b, ,mos,xxxx,O,l,l

c, ,mos,xxxx,0,2,0

The regular accumulator remains unchanged while the address
accumulator is used to walk through the structures. That· is,
first y is loaded into the accumulator. Then since c is a
member of a structure it must be located by finding the address
of the outer members of the structure. The address accumulator
is used to locate a and then b, giving access to c into which
is stored the contents of y.

,...
I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.02 PAGE 9

The address of based data.is understood to be in the address
accumulator. Thus x = p -a; yields

lapt

ldfl
stfl

p, ..•...

a, , int, cant,

x,

Subscripting is done by first getting the address of the ele­
ment into the address accumulator. The element itself can
then be accessed as if it were controlled;. in fact, a nameless
controlled variable sharing the attributes of the element is
invented for this purpose. Subscripting is indicated by fol­
lowing a~ by a special subs macro. It is done out of line.
For example these statements:

DCL a(lO,lO); a(i,j) = b;

would generate the following code:

gffl
subs
sa a a

ldfl
laaa

stfl

a, , auto, 2, 1, 0
2, i, j

z, ,(temporary storage for address accumulator)

b,

z'
...... ,cont,O,l,O

The subs macro appears after the g_:f_ macro only when the number
of dimensions is greater than zero. The first field following
subs is the number of subscripts. The remaining fields are
locations which contain the value of the subscripts. Here one
should note that the number of fields may exceed the usual ten.
Subscripts will always be default dinary integers at the current
block level.

Procedure Options

There are several macros which are the procedure options
mastermode, executeonly, callback, rename, system and validate.
(See MSPM BP.0.02) This code appears at the beginning of pass
one output. Mastermode, executeonly, callback, and system
have no arguments. Validate gives the name of the validation
procedure with scale and all fields. Rename has two fields,
the original and new names.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.2.02 PAGE 10

Compilation of Some EPL Statements

Some EPL statements warrant special attention with regard to
the way they are compiled by pass one of the EPL compiler.

A DO statement of sufficient difficulty generates among other
code a special pair of marcos. The first is dofl or dofx. The
argument of this marco is the name of the place whose value
determines the sense of the test for termination of the do loop.
The second macro is outlb. Its argument is the label of the
place to transfer to upon exit from the loop. For example the
statement: Do i = 1 to 100; would produce (among much other
code) the following macros:

dofx

outlb
xx0037,17,0,xxx,int,auto,O,l,O
xx0032,144,o,xxx,con,xxxx,o,l,O

The created·name xx0037 is used to hold the increment for the
do loop.

When a conversion is spscified by the procedure the pass one
output is this:

scale/scale field 1, ,field 4

The first scale is the current form of the variable. The second
scale is the form to which the variable is to be converted. The
four fields are the lengths and offsets of the variable before
and after conversion. For instance the statements DCL A; A = 1;
produce the followin6 macro code:

dffl

dcfx
ldfx

fxfl

stfl

a,xx0025,27,0,xxx,int,auto,O,l,O

l,xx0030,4,o,xxx,con,xxxx,o,l,O

xx0030,4,o,xxx,con1 xxxx,o,l,O

4,0,27,0

xx0025,27,0,xxx,int,auto,O,l,O

Here the fixed number·l of length 4 bits is converted to a
27 bits floating point number and the result stored in A.

In the compilation of a simple IF statement a pair of macros
is generated. The first macro is if. This specifies the
relation to be tested. The second macro is golb. This indi­
cates the place to which control passes if the relationship
tested by the if is not true. For example, DCL(Z,Y) FIXED BIN;
IF Z = Y THEN GO TO LEND; compiles into:

,....
MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BN.2.02 PAGE ll

dffx
dffx

ldfx
ifeqfx

golb

golb

dclb

dclb

zJxx0026Jl7JOJxxxJintJautoJOJlJO

yJxx0027Jl7JOJxxxJintJautoJOJlJO
xx0026Jl7JOJxxxJintJautoJOJlJO

l7JOJxx0027Jl7JOJxxxJintJautoJOJlJO

xx0031Jl44JoJxxxJconJxxxxJOJlJO

xx0033Jl44JoJxxxJconJxxxxJOJlJO

Jxx0031Jl44JOJxxxJconJxxxxJOJlJO

lendJxx0033Jl44JoJxxxJconJxxxxJOJlJO

In this example it is seen that control is passed to the next
statement if the IF relation is false.

As a further help in following through the pass one code it
should be noted that the output occurs in blocks - each block
corre5ponding to a statement from the original EPL procedure.
That isJ each semicolon in the EPL procedure is mapped into a
blank line in the macro·code.

